Effects of radiation and charge trapping on the reliability of high-kappa gate dielectrics

Abstract The radiation response and long term reliability of alternative gate dielectrics will play a critical role in determining the viability of these materials for use in future space applications. The total dose radiation responses of several near and long term alternative gate dielectrics to SiO 2 are discussed. Radiation results are presented for nitrided oxides, which show no change in interface trap density with dose and oxide trapped charge densities comparable to ultra thin thermal oxides. For aluminum oxide and hafnium oxide gate dielectric stacks, the density of oxide trapped charge is shown to depend strongly on the film thickness and processing conditions. The alternative gate dielectrics discussed here are shown to have effective trapping efficiencies that are up to ∼15 to 20 times larger than thermal SiO 2 of equivalent electrical thickness. A discussion of single event effects in devices and ICs is also provided. It is shown that some alternative gate dielectrics exhibit excellent tolerance to heavy ion induced gate dielectric breakdown. However, it is not yet known how irradiation with energetic particles will affect the long term reliability of MOS devices with high- κ gate dielectrics in a space environment.

[1]  P. S. Winokur,et al.  Dependence of Interface-State Buildup on Hole Generation and Transport in Irradiated MOS Capacitors , 1976, IEEE Transactions on Nuclear Science.

[2]  S.J. Lee,et al.  Reliability projection and polarity dependence of TDDB for ultra thin CVD HfO/sub 2/ gate dielectrics , 2002, 2002 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.01CH37303).

[3]  Evgeni Gusev,et al.  Charge trapping and detrapping in HfO 2 high- k gate stacks , 2004 .

[4]  D. Fleetwood,et al.  Thermally stimulated current in SiO2 , 1999 .

[5]  Daniel M. Fleetwood,et al.  Effects of hydrogen transport and reactions on microelectronics radiation response and reliability , 2002, Microelectron. Reliab..

[6]  J. Jameson,et al.  Atomic scale effects of zirconium and hafnium incorporation at a model silicon/silicate interface by first principles calculations , 2001, IEEE Electron Device Letters.

[7]  S. Campbell,et al.  Group IVB metal oxides high permittivity gate insulators deposited from anhydrous metal nitrates , 2001 .

[8]  Tak H. Ning,et al.  Hot-carrier charge trapping and trap generation in HfO2 and Al2O3 field-effect transistors , 2003 .

[9]  R. V. Konakova,et al.  Influence of ? radiation on thin Ta 2O 5Si structures , 2001 .

[10]  H. E. Boesch,et al.  The Relationship between 60Co and 10-keV X-Ray Damage in MOS Devices , 1986, IEEE Transactions on Nuclear Science.

[11]  Evgeni P. Gusev,et al.  Charge detrapping in HfO2 high-κ gate dielectric stacks , 2003 .

[12]  Scofield,et al.  Evidence that similar point defects cause 1/f noise and radiation-induced-hole trapping in metal-oxide-semiconductor transistors. , 1990, Physical review letters.

[13]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[14]  L. Ragnarsson,et al.  Ultrathin high-K gate stacks for advanced CMOS devices , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[15]  Walter C. Johnson,et al.  Relationship between trapped holes and interface states in MOS capacitors , 1980 .

[16]  T. Wrobel,et al.  On Heavy Ion Induced Hard-Errors in Dielectric Structures , 1987, IEEE Transactions on Nuclear Science.

[17]  L. Ragnarsson,et al.  Physical and electrical properties of reactive molecular-beam-deposited aluminum nitride in metal-oxide-silicon structures , 2003 .

[18]  A. Waxman,et al.  Radiation resistance of Al 2 O 3 MOS devices , 1969 .

[19]  S. T. Liu,et al.  Total dose performance at 77 K of a radiation hard 0.35 /spl mu/m CMOS SOI technology , 2000 .

[20]  Alessandro Paccagnella,et al.  Ionizing radiation induced leakage current on ultra-thin gate oxides , 1997 .

[21]  Thomas A. Fischer,et al.  Heavy-Ion-Induced, Gate-Rupture in Power MOSFETs , 1987, IEEE Transactions on Nuclear Science.

[22]  N. Bhat,et al.  Interface-state generation under radiation and high-field stressing in reoxidized nitrided oxide MOS capacitors , 1992 .

[23]  peixiong zhao,et al.  Heavy-ion-induced breakdown in ultra-thin gate oxides and high-k dielectrics , 2001 .

[24]  D. Binder,et al.  Satellite Anomalies from Galactic Cosmic Rays , 1975, IEEE Transactions on Nuclear Science.

[25]  P. S. Winokur,et al.  Two‐stage process for buildup of radiation‐induced interface states , 1979 .

[26]  G. Mura,et al.  Are soft breakdown and hard breakdown of ultrathin gate oxides actually different failure mechanisms? , 2000, IEEE Electron Device Letters.

[27]  Harold Borkan,et al.  Radiation Hardening of CMOS Technologies - AN Overview , 1977, IEEE Transactions on Nuclear Science.

[28]  T. Hori,et al.  Inversion layer mobility under high normal field in nitrided-oxide MOSFETs , 1990 .

[29]  J. V. Osborn,et al.  Total-dose tolerance of the commercial Taiwan Semiconductor Manufacturing Company (TSMC) 0.35-/spl mu/m CMOS process , 2001, 2001 IEEE Radiation Effects Data Workshop. NSREC 2001. Workshop Record. Held in conjunction with IEEE Nuclear and Space Radiation Effects Conference (Cat. No.01TH8588).

[30]  Daniel M. Fleetwood Dual‐transistor method to determine threshold‐voltage shifts due to oxide‐trapped charge and interface traps in metal‐oxide‐semiconductor devices , 1989 .

[31]  Gabriella Ghidini,et al.  Noise characteristics of radiation-induced soft breakdown current in ultrathin gate oxides , 2001 .

[32]  J. V. Osborn,et al.  Total-dose tolerance of a chartered semiconductor 0.35-/spl mu/m CMOS process , 1999, 1999 IEEE Radiation Effects Data Workshop. Workshop Record. Held in conjunction with IEEE Nuclear and Space Radiation Effects Conference (Cat. No.99TH8463).

[33]  R. Degraeve,et al.  Low Weibull slope of breakdown distributions in high-k layers , 2002, IEEE Electron Device Letters.

[34]  M. Fischetti,et al.  Charge trapping in high k gate dielectric stacks , 2002, Digest. International Electron Devices Meeting,.

[35]  O. Flament,et al.  The role of electron transport and trapping in MOS total-dose modeling , 1999 .

[36]  H. E. Boesch,et al.  Hole Removal in Thin-Gate MOSFETs by Tunneling , 1985, IEEE Transactions on Nuclear Science.

[37]  David J. Frank,et al.  Power-constrained CMOS scaling limits , 2002, IBM J. Res. Dev..

[38]  R. V. van Dover,et al.  High K gate dielectrics for the silicon industry , 2001, Extended Abstracts of International Workshop on Gate Insulator. IWGI 2001 (IEEE Cat. No.01EX537).

[39]  J. V. Osborn,et al.  Total dose hardness of three commercial CMOS microelectronics foundries , 1997 .

[40]  John F. Conley,et al.  Heavy-ion-induced soft breakdown of thin gate oxides , 2001 .

[41]  C. F. Wheatley,et al.  Effect of ion energy upon dielectric breakdown of the capacitor response in vertical power MOSFETs , 1998 .

[42]  Alessandro Paccagnella,et al.  Total dose dependence of radiation-induced leakage current in ultra-thin gate oxides , 1999 .

[43]  T. Oldham,et al.  Basic Mechanisms of Radiation Effects in Electronic Materials and Devices , 1987 .

[44]  S.J. Lee,et al.  Performance and reliability of ultra thin CVD HfO/sub 2/ gate dielectrics with dual poly-Si gate electrodes , 2001, 2001 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.01 CH37184).

[45]  C. F. Wheatley,et al.  Single-event gate rupture in vertical power MOSFETs; an original empirical expression , 1994 .

[46]  H. Esaki,et al.  Interface states and fixed charges in nanometer-range thin nitrided oxides prepared by rapid thermal annealing , 1986, IEEE Electron Device Letters.

[47]  R.H. Dennard,et al.  Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions , 1974, Proceedings of the IEEE.

[48]  T. Arakawa,et al.  Thin-gate SiO/sub 2/ films formed by in situ multiple rapid thermal processing , 1992 .

[49]  Daniel M. Fleetwood,et al.  Charge yield for cobalt-60 and 10-keV X-ray irradiations of MOS devices , 1991 .

[50]  P. S. Winokur,et al.  Correlating the Radiation Response of MOS Capacitors and Transistors , 1984, IEEE Transactions on Nuclear Science.

[51]  E. Cartier,et al.  Ultrathin high-K metal oxides on silicon: processing, characterization and integration issues , 2001 .

[52]  Peter W. Wyatt,et al.  Reoxidized nitrided oxide for radiation-hardened MOS devices , 1989 .

[53]  Robert M. Wallace,et al.  ELECTRICAL PROPERTIES OF HAFNIUM SILICATE GATE DIELECTRICS DEPOSITED DIRECTLY ON SILICON , 1999 .

[54]  K. Zawadzki,et al.  Effect of barrier layer on the electrical and reliability characteristics of high-k gate dielectric films , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[55]  G. J. Dunn,et al.  Channel hot-carrier stressing of reoxidized nitrided silicon dioxide , 1990 .

[56]  P. S. Winokur,et al.  Optimizing and Controlling the Radiation Hardness of a Si-Gate CMOS Process , 1985, IEEE Transactions on Nuclear Science.

[57]  J. F. Conley,et al.  The radiation response of the high dielectric-constant hafnium oxide/silicon system , 2002 .

[58]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[59]  Douglas A. Buchanan,et al.  Scaling the gate dielectric: Materials, integration, and reliability , 1999, IBM J. Res. Dev..

[60]  Massimo V. Fischetti,et al.  Charge trapping related threshold voltage instabilities in high permittivity gate dielectric stacks , 2003 .

[61]  E. H. Nicollian,et al.  Mos (Metal Oxide Semiconductor) Physics and Technology , 1982 .

[62]  Alessandro Paccagnella,et al.  Low field leakage current and soft breakdown in ultra-thin gate oxides after heavy ions, electrons or X-ray irradiation , 1999 .

[63]  Eduard A. Cartier,et al.  Local transport and trapping issues in Al2O3 gate oxide structures , 2000 .

[64]  G. Lucovsky,et al.  Microscopic model for enhanced dielectric constants in low concentration SiO2-rich noncrystalline Zr and Hf silicate alloys , 2000 .

[65]  Bin Wang,et al.  Observation of latent reliability degradation in ultrathin oxides after heavy-ion irradiation , 2002 .

[66]  P. Winokur,et al.  Simple technique for separating the effects of interface traps and trapped‐oxide charge in metal‐oxide‐semiconductor transistors , 1986 .

[67]  C. W. Chen,et al.  Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate , 1999 .

[68]  Radiation-induced charge trapping in thin Al2O3/SiOxNy/Si(100) gate dielectric stacks. , 2003 .

[69]  A. Candelori,et al.  Heavy ion irradiation of thin gate oxides , 2000 .

[70]  E. P. Gusev,et al.  Radiation-induced charge trapping in thin Al/sub 2/O/sub 3//SiO/sub x/N/sub y//Si(100) gate dielectric stacks , 2003 .

[71]  J. A. Modolo,et al.  Radiation Effects in MOS Capacitors with Very Thin Oxides at 80°K , 1984, IEEE Transactions on Nuclear Science.

[72]  Takashi Hori,et al.  Deep-submicrometer CMOS technology with reoxidized or annealed nitrided-oxide gate dielectrics prepared by rapid thermal processing , 1992 .

[73]  Alessandro Paccagnella,et al.  Accelerated wear-out of ultra-thin gate oxides after irradiation , 2003 .

[74]  Ronald D. Schrimpf,et al.  Total-dose radiation response of hafnium-silicate capacitors , 2002 .

[75]  F. B. McLean A Framework for Understanding Radiation-Induced Interface States in SiO2 MOS Structures , 1980, IEEE Transactions on Nuclear Science.

[76]  H. E. Boesch,et al.  Rapid annealing and charge injection in Al 2 O 3 MIS capacitors , 1974 .

[77]  K. Onishi,et al.  Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric , 2000, IEEE Electron Device Letters.

[78]  Ronald D. Schrimpf,et al.  Interface trapping properties of nMOSFETs with Al 2 O 3 /SiO x N y /Si(100) gate dielectric stacks after exposure to ionizing radiation , 2004 .

[79]  D. Fleetwood,et al.  New insights into radiation-induced oxide-trap charge through thermally-stimulated-current measurement and analysis (MOS capacitors) , 1992 .

[80]  Alessandro Paccagnella,et al.  Radiation induced leakage current and stress induced leakage current in ultra-thin gate oxides , 1998 .

[81]  G. Baccarani,et al.  Generalized scaling theory and its application to a ¼ micrometer MOSFET design , 1984, IEEE Transactions on Electron Devices.

[82]  Martin L. Green,et al.  A new method to fabricate thin oxynitride/oxide gate dielectric for deep submicron devices , 1993 .

[83]  R. Wallace,et al.  Hafnium and zirconium silicates for advanced gate dielectrics , 2000 .

[84]  Daniel M. Fleetwood,et al.  Predicting switched-bias response from steady-state irradiations MOS transistors , 1990 .

[85]  J. Robertson Band offsets of wide-band-gap oxides and implications for future electronic devices , 2000 .

[86]  Impact of moisture on charge trapping and flatband voltage in Al2O3 gate dielectric films , 2002 .

[87]  Daniel M. Fleetwood,et al.  Radiation‐induced charge neutralization and interface‐trap buildup in metal‐oxide‐semiconductor devices , 1990 .

[88]  Yuan Taur,et al.  CMOS design near the limit of scaling , 2002 .

[89]  J.C. Lee,et al.  Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[90]  Yuan Taur,et al.  CMOS scaling into the 21st century: 0.1 µm and beyond , 1995, IBM J. Res. Dev..

[91]  Daniel M. Fleetwood,et al.  Effect of post-oxidation anneal temperature on radiation-induced charge trapping in metal-oxide-semiconductor devices , 1988 .

[92]  R.H. Dennard,et al.  Evolution of the MOSFET dynamic RAM—A personal view , 1984, IEEE Transactions on Electron Devices.

[93]  Daniel M. Fleetwood,et al.  Single event gate rupture in thin gate oxides , 1997 .

[94]  Hiroshi Iwasaki,et al.  Electrical and physical properties of ultrathin reoxidized nitrided oxides prepared by rapid thermal processing , 1989 .

[95]  P. E. Norris,et al.  CMOS Hardening Techniques , 1972 .

[96]  E. Harari,et al.  Trap structure of pyrolytic Al2O3 in MOS capacitors , 1973 .

[97]  J.C. Lee,et al.  Area dependence of TDDB characteristics for HfO2 gate dielectrics , 2002, IEEE Electron Device Letters.