Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx

[1] We here reassess the global distribution of several key mineral species using the entire OMEGA/Mars Express VIS-NIR imaging spectrometer data set, acquired from orbit insertion in January 2004 to August 2010. Thirty-two pixels per degree global maps of ferric oxides, pyroxenes and olivines have been derived. A significant filtering process was applied in order to exclude data acquired with unfavorable observation geometries or partial surface coverage with water and CO2 frosts. Because of strong atmospheric variations over the 3.6 Martian years of observations primarily due to the interannual variability of the aerosol opacity, a new filter based on the atmospheric dust opacity calibrated by the Mars Exploration Rovers measurements has also been implemented. The Fe3+absorption features are present everywhere on the surface, with a variety of intensities indicating distinct formation processes. The pyroxene-bearing regions are localized in low albedo regions, while the bright regions are spectrally comparable to anhydrous nanophase ferric oxides. The expanded data set increases by a factor of about 2, the number of olivine detections reported in previous OMEGA-based studies. Olivine is mainly detected in three types of areas over the Martian surface: discontinuous patches on the terraces of the three main basins; smooth inter-crater plains and smooth crater floors throughout the southern highlands; and crater sand dunes, crater ejectas and extended bedrock exposures in the northern plains. Olivine is also detected in the low albedo pyroxene-bearing dunes surrounding the northern polar cap.

[1]  François Poulet,et al.  OMEGA: Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité , 2004 .

[2]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[3]  Patrick Pinet,et al.  Martian surface mineralogy from Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps , 2007 .

[4]  Jean-Pierre Bibring,et al.  Hydration state of the Martian surface as seen by Mars Express OMEGA: 2. H2O content of the surface , 2007 .

[5]  P. Christensen,et al.  Surface and crater‐exposed lithologic units of the Isidis Basin as mapped by coanalysis of THEMIS and TES derived data products , 2008 .

[6]  Yves Langevin,et al.  A spherical Monte-Carlo model of aerosols: Validation and first applications to Mars and Titan , 2010 .

[7]  G. Neukum,et al.  Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian , 2007 .

[8]  B. Hapke,et al.  Mineralogy of Martian atmospheric dust inferred from thermal infrared spectra of aerosols , 2005 .

[9]  F. Poulet,et al.  Spectral variability of the Martian high latitude surfaces , 2008 .

[10]  Jean-Pierre Bibring,et al.  Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data. 2. Petrological implications , 2009 .

[11]  J. Mustard,et al.  Hydration state of the Martian surface as seen by Mars Express OMEGA: 1. Analysis of the 3 μm hydration feature , 2007 .

[12]  Joshua L. Bandfield,et al.  Global mineral distributions on Mars , 2002 .

[13]  R. Clark,et al.  Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data , 2000 .

[14]  Yves Langevin,et al.  OMEGA/Mars Express: Visual channel performances and data reduction techniques , 2006 .

[15]  Richard V. Morris,et al.  Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples , 2000 .

[16]  Jimmy D Bell,et al.  Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity , 2004, Science.

[17]  Alain Soufflot,et al.  The ground calibration setup of OMEGA and VIRTIS experiments: description and performances , 2005 .

[18]  R. Morris,et al.  Evidence for pigmentary hematite on Mars based on optical, magnetic, and Mossbauer studies of superparamagnetic (nanocrystalline) hematite , 1989 .

[19]  S. Douté,et al.  Observations of the south seasonal cap of Mars during recession in 2004–2006 by the OMEGA visible/near‐infrared imaging spectrometer on board Mars Express , 2007 .

[20]  J. Mustard,et al.  Key scientific questions and key investigations from the first international conference on Martian phyllosilicates. , 2009, Astrobiology.

[21]  S. Ruff Spectral evidence for zeolite in the dust on Mars , 2002 .

[22]  Victoria E. Hamilton,et al.  Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data , 2008 .

[23]  R. Clark,et al.  Discovery of Olivine in the Nili Fossae Region of Mars , 2003, Science.

[24]  Jeffrey R. Johnson,et al.  Characterization and petrologic interpretation of olivine‐rich basalts at Gusev Crater, Mars , 2006 .

[25]  R. Clark,et al.  Mars: Near‐infrared spectral reflectance of surface regions and compositional implications , 1982 .

[26]  M. Mellon,et al.  High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[27]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[28]  Jean-Pierre Bibring,et al.  Yearly and seasonal variations of low albedo surfaces on Mars in the OMEGA/MEx dataset: Constraints on aerosols properties and dust deposits , 2009, 1103.3426.

[29]  S. Ruff,et al.  Bright and dark regions on Mars: Particle size and mineralogical characteristics based on thermal emission spectrometer data , 2002 .

[30]  V. Hamilton,et al.  Evidence for extensive olivine-rich basalt bedrock outcrops in Ganges and Eos chasmas, Mars , 2008 .

[31]  Marc Barthelemy,et al.  The ESA's Planetary Science Archive (PSA) , 2009 .

[32]  A. McEwen,et al.  Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results , 2003, Science.

[33]  S. Murchie,et al.  Detection of Hydrated Silicates in Crustal Outcrops in the Northern Plains of Mars , 2010, Science.

[34]  V. Hamilton,et al.  Evidence for extensive, olivine-rich bedrock on Mars , 2005 .

[35]  Y. Langevin,et al.  Olivine and Pyroxene Diversity in the Crust of Mars , 2005, Science.

[36]  Jean-Pierre Bibring,et al.  Recovery of surface reflectance spectra and evaluation of the optical depth of aerosols in the near-IR using a Monte-Carlo approach: Application to the OMEGA observations of high latitude regions of Mars , 2007 .