A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells

Interface engineering in organometal halide perovskite solar cells (PSCs) has been an efficient tool to boost the performance and stability of photovoltaic (PV) devices.

[1]  S. Zakeeruddin,et al.  Synergistic Crystal and Interface Engineering for Efficient and Stable Perovskite Photovoltaics , 2018, Advanced Energy Materials.

[2]  M. Grätzel,et al.  Addition of adamantylammonium iodide to hole transport layers enables highly efficient and electroluminescent perovskite solar cells , 2018 .

[3]  S. Zakeeruddin,et al.  Adamantanes Enhance the Photovoltaic Performance and Operational Stability of Perovskite Solar Cells by Effective Mitigation of Interfacial Defect States , 2018 .

[4]  M. Grätzel,et al.  Greener, Nonhalogenated Solvent Systems for Highly Efficient Perovskite Solar Cells , 2018 .

[5]  S. Zakeeruddin,et al.  One-step mechanochemical incorporation of an insoluble cesium additive for high performance planar heterojunction solar cells , 2018, Nano Energy.

[6]  J. Kong,et al.  Surface Engineering of TiO2 ETL for Highly Efficient and Hysteresis‐Less Planar Perovskite Solar Cell (21.4%) with Enhanced Open‐Circuit Voltage and Stability , 2018, Advanced Energy Materials.

[7]  F. Giordano,et al.  Mesoscopic Oxide Double Layer as Electron Specific Contact for Highly Efficient and UV Stable Perovskite Photovoltaics. , 2018, Nano letters.

[8]  Zhiyong Fan,et al.  Large‐Grain Tin‐Rich Perovskite Films for Efficient Solar Cells via Metal Alloying Technique , 2018, Advanced materials.

[9]  N. Zheng,et al.  Efficient, Hysteresis‐Free, and Stable Perovskite Solar Cells with ZnO as Electron‐Transport Layer: Effect of Surface Passivation , 2018, Advanced materials.

[10]  In Hwan Jung,et al.  Perovskite Solar Cells: High‐Efficiency Low‐Temperature ZnO Based Perovskite Solar Cells Based on Highly Polar, Nonwetting Self‐Assembled Molecular Layers (Adv. Energy Mater. 5/2018) , 2018 .

[11]  J. Xiong,et al.  Thermal Stability-Enhanced and High-Efficiency Planar Perovskite Solar Cells with Interface Passivation. , 2017, ACS applied materials & interfaces.

[12]  Jongmin Choi,et al.  Systematically Optimized Bilayered Electron Transport Layer for Highly Efficient Planar Perovskite Solar Cells (η = 21.1%) , 2017 .

[13]  Z. Fan,et al.  High-quality organohalide lead perovskite films fabricated by layer-by-layer alternating vacuum deposition for high efficiency photovoltaics , 2017 .

[14]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[15]  Wei Huang,et al.  Additive engineering for highly efficient organic–inorganic halide perovskite solar cells: recent advances and perspectives , 2017 .

[16]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[17]  Z. Fan,et al.  A non-catalytic vapor growth regime for organohalide perovskite nanowires using anodic aluminum oxide templates. , 2017, Nanoscale.

[18]  Dong-Won Kang,et al.  Improved interface of ZnO/CH3NH3PbI3 by a dynamic spin-coating process for efficient perovskite solar cells , 2017 .

[19]  L. Quan,et al.  Efficient and stable solution-processed planar perovskite solar cells via contact passivation , 2017, Science.

[20]  M. R. Toroghinejad,et al.  Efficiency enhancement of hole-conductor-free perovskite solar cell based on ZnO nanostructure by Al doping in ZnO , 2017 .

[21]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[22]  Jing Kong,et al.  Visibly‐Transparent Organic Solar Cells on Flexible Substrates with All‐Graphene Electrodes , 2016 .

[23]  R. Tavakoli,et al.  Interface Engineering of Perovskite Solar Cell Using a Reduced-Graphene Scaffold , 2016 .

[24]  Z. Fan,et al.  High Efficiency and Stable Perovskite Solar Cell Using ZnO/rGO QDs as an Electron Transfer Layer , 2016 .

[25]  Jin He,et al.  Progress and Design Concerns of Nanostructured Solar Energy Harvesting Devices. , 2016, Small.

[26]  Zhiyong Fan,et al.  High performance thin film solar cells on plastic substrates with nanostructure-enhanced flexibility , 2016 .

[27]  Heping Shen,et al.  Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[28]  Jinsong Huang,et al.  Advances in Perovskite Solar Cells , 2016, Advanced science.

[29]  Zhiyong Fan,et al.  Chemical processing of three-dimensional graphene networks on transparent conducting electrodes for depleted-heterojunction quantum dot solar cells. , 2016, Chemical communications.

[30]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[31]  Jin He,et al.  Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method , 2015, Scientific Reports.

[32]  Yan Yao,et al.  Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures. , 2015, ACS nano.

[33]  Zhiqiang Guan,et al.  Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles. , 2015, ACS applied materials & interfaces.

[34]  M. Tavakoli,et al.  Supercritical synthesis and in situ deposition of PbS nanocrystals with oleic acid passivation for quantum dot solar cells , 2015 .

[35]  C. Brabec,et al.  Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance , 2015 .

[36]  Ningyi Yuan,et al.  The effect of ALD-Zno layers on the formation of CH₃NH₃PbI₃ with different perovskite precursors and sintering temperatures. , 2014, Chemical communications.

[37]  Nakita K. Noel,et al.  Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. , 2014, ACS nano.

[38]  M. Johnston,et al.  Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3-xClx , 2014 .

[39]  Parviz Davami,et al.  A quantitative approach to study solid state phase coarsening in solder alloys using combined phase-field modeling and experimental observation , 2014 .

[40]  M. Tavakkoli,et al.  Effect of molybdenum on grain boundary segregation in Incoloy 901 superalloy , 2013 .