Organic solar cells with semitransparent metal back contacts for power window applications.

To provide truly transparent solar cells for power window applications, both semiconductor and electrode materials have to have a very low absorption over as much of the visible spectrum as possible. We present some promising visible transparent semiconductor combinations, namely zinc-phthalocyanine or zinc-naphthalocyanine together with soluble fullerenes in conjunction with a method for obtaining highly transparent thin metal films by tuning the interference patterns in the multilayer organic solar cells structure. In an optimal combination, solar cells with an efficiency of about 0.5 % and a peak transparency of more than 60 % in the visible part of the spectrum were fabricated.

[1]  Karl Leo,et al.  Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes , 2009 .

[2]  Shih-Wei Lee,et al.  Polymer photovoltaic devices with highly transparent cathodes , 2008 .

[3]  K. Leo,et al.  Small-molecule solar cells—status and perspectives , 2008, Nanotechnology.

[4]  J. Meiss,et al.  Improved light harvesting in tin-doped indum oxide (ITO)-free inverted bulk-heterojunction organic solar cells using capping layers , 2008 .

[5]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[6]  Gang Li,et al.  A Semi‐transparent Plastic Solar Cell Fabricated by a Lamination Process , 2008 .

[7]  P. Troshin,et al.  Highly Regio- and Stereoselective (2+3) Cycloadditions of Azomethine Ylides to (70)Fullerene , 2007 .

[8]  N. S. Sariciftci,et al.  Supramolecular Association of Pyrrolidinofullerenes Bearing Chelating Pyridyl Groups and Zinc Phthalocyanine for Organic Solar Cells , 2007 .

[9]  N. S. Sariciftci,et al.  Advanced photon-harvesting concepts for low-energy gap organic solar cells , 2007 .

[10]  Barry P Rand,et al.  Near-infrared sensitive small molecule organic photovoltaic cells based on chloroaluminum phthalocyanine , 2007 .

[11]  M. Powalla,et al.  Contacts for semitransparent organic solar cells , 2007 .

[12]  Stephen R. Forrest,et al.  Semitransparent organic photovoltaic cells , 2006 .

[13]  Martin Pfeiffer,et al.  Highly efficient top emitting organic light-emitting diodes with organic outcoupling enhancement layers , 2006 .

[14]  R. Koeppe,et al.  Complexation of pyrrolidinofullerenes and zinc-phthalocyanine in a bilayer organic solar cell structure , 2005 .

[15]  S. Forrest,et al.  Organic solar cells with sensitivity extending into the near infrared , 2005 .

[16]  Niyazi Serdar Sariciftci,et al.  Flexible Conjugated Polymer-Based Plastic Solar Cells: From Basics to Applications , 2005, Proceedings of the IEEE.

[17]  P. Troshin,et al.  An efficient [2+3] cycloaddition approach to the synthesis of pyridyl- appended fullerene ligands , 2005 .

[18]  O. Inganäs,et al.  Optical modelling of a layered photovoltaic device with a polyfluorene derivative/fullerene as the active layer , 2004 .

[19]  L. Huo,et al.  Octabultoxy 2,3-naphthalocyanine cobalt(II) ultrathin film: preparation, characterization and gas-sensing properties , 2004 .

[20]  N. Arnold,et al.  Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells , 2003 .

[21]  Uli Lemmer,et al.  Organic Microcavity Photodiodes , 2003 .

[22]  Stephen R. Forrest,et al.  Small molecular weight organic thin-film photodetectors and solar cells , 2003 .

[23]  C. Tang Two‐layer organic photovoltaic cell , 1986 .