On the complete weight enumerators of some reducible cyclic codes

Let F r be a finite field with r = q m elements and ? a primitive element of F r . Suppose that h 1 ( x ) and h 2 ( x ) are the minimal polynomials over F q of g 1 - 1 and g 2 - 1 , respectively, where g 1 , g 2 ? F r ? . Let C be a reducible cyclic code over F q with check polynomial h 1 ( x ) h 2 ( x ) . In this paper, we investigate the complete weight enumerators of the cyclic codes C in the following two cases: (1) g 1 = ? q - 1 h , g 2 = β g 1 , where h 1 is a divisor of q - 1 , e 1 is a divisor of h , and β = ? r - 1 e ; (2) g 1 = ? 2 , g 2 = ? p k + 1 , where q = p is an odd prime and k is a positive integer. Moreover, we explicitly present the complete weight enumerators of some cyclic codes.

[1]  Cunsheng Ding,et al.  Seven Classes of Three-Weight Cyclic Codes , 2013, IEEE Transactions on Communications.

[2]  Cunsheng Ding,et al.  A Generic Construction of Cartesian Authentication Codes , 2007, IEEE Transactions on Information Theory.

[3]  Cunsheng Ding,et al.  A coding theory construction of new systematic authentication codes , 2005, Theor. Comput. Sci..

[4]  Tao Feng,et al.  Strongly regular graphs from unions of cyclotomic classes , 2010, J. Comb. Theory, Ser. B.

[5]  Jing Yang,et al.  Weight Distribution of a Class of Cyclic Codes With Arbitrary Number of Zeros , 2013, IEEE Transactions on Information Theory.

[6]  Rudolf Lide,et al.  Finite fields , 1983 .

[7]  Tao Feng,et al.  Evaluation of the Weight Distribution of a Class of Cyclic Codes Based on Index 2 Gauss Sums , 2012, IEEE Transactions on Information Theory.

[8]  Jing Yang,et al.  Complete solving of explicit evaluation of Gauss sums in the index 2 case , 2009, 0911.5472.

[9]  Ian F. Blake,et al.  On the Complete Weight Enumerator of Reed-Solomon Codes , 1991, SIAM J. Discret. Math..

[10]  Xiangyong Zeng,et al.  A class of binary cyclic codes with five weights , 2010 .

[11]  Yixian Yang,et al.  The Weight Distributions of Cyclic Codes and Elliptic Curves , 2011, IEEE Transactions on Information Theory.

[12]  Gennian Ge,et al.  On the Weight Distribution of Cyclic Codes With Niho Exponents , 2014, IEEE Transactions on Information Theory.

[13]  Chengju Li,et al.  Hamming Weights of the Duals of Cyclic Codes With Two Zeros , 2014, IEEE Transactions on Information Theory.

[14]  Tao Feng On cyclic codes of length $${2^{2^r}-1}$$ with two zeros whose dual codes have three weights , 2012, Des. Codes Cryptogr..

[15]  Chengju Li,et al.  A class of cyclic codes from two distinct finite fields , 2015, Finite Fields Their Appl..

[16]  N. J. A. Sloane,et al.  Generalizations of Gleason's theorem on weight enumerators of self-dual codes , 1972, IEEE Trans. Inf. Theory.

[17]  Maosheng Xiong,et al.  The weight distributions of a class of cyclic codes II , 2011, Finite Fields Their Appl..

[18]  Cunsheng Ding,et al.  A class of three-weight cyclic codes , 2013, Finite Fields Their Appl..

[19]  Keqin Feng,et al.  Weight distribution of some reducible cyclic codes , 2008, Finite Fields Their Appl..

[20]  K. Williams,et al.  Gauss and Jacobi sums , 2021, Mathematical Surveys and Monographs.

[21]  Gerardo Vega,et al.  New classes of 2-weight cyclic codes , 2007, Des. Codes Cryptogr..

[22]  Cunsheng Ding,et al.  The Weight Distributions of Several Classes of Cyclic Codes From APN Monomials , 2013, IEEE Transactions on Information Theory.

[23]  Tor Helleseth,et al.  Monomial and quadratic bent functions over the finite fields of odd characteristic , 2006, IEEE Transactions on Information Theory.

[24]  Jing Yang,et al.  Weight Distributions of a Class of Cyclic Codes with Arbitrary Number of Zeros II , 2014, ArXiv.

[25]  Lei Hu,et al.  A triple-error-correcting cyclic code from the Gold and Kasami-Welch APN power functions , 2010, Finite Fields Their Appl..

[26]  Cunsheng Ding,et al.  The Weight Distributions of the Duals of Cyclic Codes With Two Zeros , 2011, IEEE Transactions on Information Theory.

[27]  Chengju Li,et al.  Some results on strongly regular graphs from unions of cyclotomic classes , 2012 .

[28]  Yuansheng Tang,et al.  Cyclic Codes and Sequences: The Generalized Kasami Case , 2009, IEEE Transactions on Information Theory.

[29]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[30]  Lei Hu,et al.  The weight distribution of a class of p-ary cyclic codes , 2010, Finite Fields Their Appl..

[31]  Cunsheng Ding,et al.  The Weight Enumerator of a Class of Cyclic Codes , 2011, IEEE Transactions on Information Theory.

[32]  Keqin Feng,et al.  On the Weight Distributions of Two Classes of Cyclic Codes , 2008, IEEE Transactions on Information Theory.

[33]  Aleksandr A. Nechaev,et al.  Complete weight enumerators of generalized Kerdock code and related linear codes over Galois ring , 2001, Discret. Appl. Math..

[34]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[35]  Cunsheng Ding,et al.  Hamming weights in irreducible cyclic codes , 2011, Discret. Math..

[36]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[37]  Cunsheng Ding,et al.  A Family of Five-Weight Cyclic Codes and Their Weight Enumerators , 2013, IEEE Transactions on Information Theory.

[38]  Tor Helleseth,et al.  A general construction of authentication codes , 2007 .

[39]  Philippe Delsarte,et al.  On subfield subcodes of modified Reed-Solomon codes (Corresp.) , 1975, IEEE Trans. Inf. Theory.