Gröbner bases and combinatorics for binary codes

In this paper we introduce a binomial ideal derived from a binary linear code. We present some applications of a Gröbner basis of this ideal with respect to a total degree ordering. In the first application we give a decoding method for the code. In the second one, by associating the code with the set of cycles in a graph, we can solve the problem of finding all codewords of minimal length (minimal cycles in a graph), and show how to find a minimal cycle basis. Finally we discuss some results on the computation of the Gröbner basis.

[1]  Yuichi Kaji,et al.  Maximum likelihood decoding for linear block codes using Grobner bases , 2003 .

[2]  Edgar Martínez-Moro,et al.  A General Framework for Applying FGLM Techniques to Linear Codes , 2006, AAECC.

[3]  Teo Mora,et al.  Computing Gröbner Bases by FGLM Techniques in a Non-commutative Setting , 2000, J. Symb. Comput..

[4]  Edgar Martínez-Moro,et al.  A Gröbner representation for linear codes , 2007 .

[5]  Peter F. Stadler,et al.  Minimal Cycle Bases of Outerplanar Graphs , 1998, Electron. J. Comb..

[6]  Ralf Fröberg,et al.  An introduction to Gröbner bases , 1997, Pure and applied mathematics.

[7]  Philippe Vismara,et al.  Union of all the Minimum Cycle Bases of a Graph , 1997, Electron. J. Comb..

[8]  T. W. Dube Quantitative analysis of problems in computer algebra: grobner bases and the nulstellensatz , 1989 .

[9]  F. Lemmermeyer Error-correcting Codes , 2005 .

[10]  Teo Mora,et al.  Solving Polynomial Equation Systems II: Macaulay's Paradigm and Gröbner Technology , 2005 .

[11]  Alexander Barg,et al.  Complexity Issues in Coding Theory , 1997, Electron. Colloquium Comput. Complex..

[12]  H. Michael Möller,et al.  Upper and Lower Bounds for the Degree of Groebner Bases , 1984, EUROSAM.

[13]  Patrick Fitzpatrick,et al.  A Gröbner basis technique for Padé approximation , 1992 .

[14]  Gilles Zémor Threshold effects in codes , 1993, Algebraic Coding.

[15]  L. O'carroll AN INTRODUCTION TO GRÖBNER BASES (Graduate Studies in Mathematics 3) , 1996 .

[16]  Dominique Foata,et al.  Calcul Basique des Permutations Signées, II: Analogues Finis des Fonctions de BesseL , 1996 .

[17]  M. Borges-Quintana,et al.  On a Gröbner bases structure associated to linear codes , 2005 .

[18]  James L. Massey,et al.  Review of 'Error-Correcting Codes, 2nd edn.' (Peterson, W. W., and Weldon, E. J., Jr.; 1972) , 1973, IEEE Trans. Inf. Theory.

[19]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[20]  Tor Helleseth,et al.  Error-correction capability of binary linear codes , 2003, IEEE Transactions on Information Theory.

[21]  W. T. Tutte,et al.  Encyclopedia of Mathematics and its Applications , 2001 .

[22]  W. Brownawell Bounds for the degrees in the Nullstellensatz , 1987 .

[23]  C. Traverso,et al.  Efficient Algorithms for Basic Module Operations , 2006 .

[24]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[25]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[26]  Patrick Fitzpatrick Solving a Multivariable Congruence by Change of Term Order , 1997, J. Symb. Comput..

[27]  T. Shaska,et al.  Advances in Coding Theory and Crytography , 2007 .

[28]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .