A 40nm CMOS highly linear 0.4-to-6GHz receiver resilient to 0dBm out-of-band blockers

SDRs come of age ([1,2]) and transcend beyond just acquiring the reconfigura-bility to replace any standard radio: they develop toward systems where a simplified antenna interface can be used, with most dedicated filtering removed. This requires a receiver accommodating much higher linearity and resilience against out-of-band interference than a standard radio, still achieving competitive sensitivity (especially in the absence of interference). Mixer-first front-ends with excellent linearity have been reported [3]. However, their NF (including 1/f in absence of the LNA gain) is not competitive, and they may suffer from large LO feedthrough to the antenna (LOFT). Moreover they lack receiver functionality such as gain and filtering, which cannot be simply added without compromising linearity. A receiver with mixer-at-the-antenna-based bandpass filter [4] similarly may suffer from LOFT and increased N F. This work presents a full software-defined receiver with 3dB NF that tolerates 0dBm blockers with acceptable blocker NF at maximum gain. It achieves +10dBm out-of-band (OB) IIP3 and >+70dBm IIP2. Such a receiver is to operate using no other than harmonic-rejection filtering.