Hinging hyperplanes for regression, classification, and function approximation

A hinge function y=h(x) consists of two hyperplanes continuously joined together at a hinge. In regression (prediction), classification (pattern recognition), and noiseless function approximation, use of sums of hinge functions gives a powerful and efficient alternative to neural networks with computation times several orders of magnitude less than is obtained by fitting neural networks with a comparable number of parameters. A simple and effective method for finding good hinges is presented. >