Global database of plants with root‐symbiotic nitrogen fixation: NodDB
暂无分享,去创建一个
Meelis Pärtel | Leho Tedersoo | M. Pärtel | L. Tedersoo | L. Laanisto | S. Rahimlou | A. Toussaint | Tiit Hallikma | Lauri Laanisto | Aurèle Toussaint | S. Rahimlou | Tiit Hallikma
[1] J. H. Burns,et al. Symbioses with nitrogen-fixing bacteria: nodulation and phylogenetic data across legume genera. , 2017, Ecology.
[2] E. James,et al. Biogeography of nodulated legumes and their nitrogen-fixing symbionts. , 2017, The New phytologist.
[3] F. Forest,et al. Insights on the evolutionary origin of Detarioideae, a clade of ecologically dominant tropical African trees. , 2017, The New phytologist.
[4] Rafael Barbosa Pinto,et al. A new subfamily classification of the leguminosae based on a taxonomically comprehensive phylogeny , 2017 .
[5] Mark C. Brundrett. Global Diversity and Importance of Mycorrhizal and Nonmycorrhizal Plants , 2017 .
[6] J. Doyle. Chasing unicorns: Nodulation origins and the paradox of novelty. , 2016, American journal of botany.
[7] J. G. Burleigh,et al. Phylogeny of the Rosidae: A dense taxon sampling analysis , 2016 .
[8] H. Qian,et al. An updated megaphylogeny of plants, a tool for generating plant phylogenies, and an analysis of phylogenetic community structure , 2016 .
[9] G. Kadereit,et al. Evolution of leaf anatomy in arid environments - A case study in southern African Tetraena and Roepera (Zygophyllaceae). , 2016, Molecular phylogenetics and evolution.
[10] Kathryn Larson-Johnson. Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales. , 2016, The New phytologist.
[11] D. Soltis,et al. Large-scale phylogenetic analyses reveal multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms associated with climate change , 2015, Scientific Reports.
[12] S. Magallón,et al. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. , 2015, The New phytologist.
[13] Alexandre Antonelli,et al. Estimating species diversity and distribution in the era of Big Data: to what extent can we trust public databases? , 2015, Global ecology and biogeography : a journal of macroecology.
[14] G. Prenner,et al. Filling in the gaps of the papilionoid legume phylogeny: the enigmatic Amazonian genus Petaladenium is a new branch of the early-diverging Amburaneae clade. , 2015, Molecular phylogenetics and evolution.
[15] H. Peter Linder,et al. Do Mediterranean‐type ecosystems have a common history?—Insights from the Buckthorn family (Rhamnaceae) , 2015, Evolution; international journal of organic evolution.
[16] J. Shaw,et al. Diversification of almonds, peaches, plums and cherries - molecular systematics and biogeographic history of Prunus (Rosaceae). , 2014, Molecular phylogenetics and evolution.
[17] J. Kattge,et al. University of Dundee A single evolutionary innovation drives the deep evolution of symbiotic N 2-fixation in angiosperms , 2014 .
[18] R. Pennington,et al. Reconstructing the deep-branching relationships of the papilionoid legumes , 2013 .
[19] O. Maurin,et al. Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia , 2013 .
[20] S. Reed,et al. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.
[21] J. Njoka,et al. Nitrogen Fixation by Natural Populations of Acacia Senegal in the Drylands of Kenya Using 15N Natural Abundance , 2013 .
[22] Claudine Franche,et al. Biological nitrogen fixation in non-legume plants. , 2013, Annals of botany.
[23] R. Pennington,et al. Revisiting the phylogeny of papilionoid legumes: New insights from comprehensively sampled early-branching lineages. , 2012, American journal of botany.
[24] S. Higgins,et al. TRY – a global database of plant traits , 2011, Global Change Biology.
[25] M. VAN DER BANK,et al. The evolutionary history and biogeography of Mimosoideae (Leguminosae): an emphasis on African acacias. , 2010, Molecular phylogenetics and evolution.
[26] K. Huss-Danell,et al. Life in soil by the actinorhizal root nodule endophyte Frankia. A review , 2010, Symbiosis.
[27] C. Franche,et al. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants , 2009, Plant and Soil.
[28] P. Herendeen,et al. Phylogenetic patterns and diversification in the caesalpinioid legumes , 2008 .
[29] J. Sprent. Evolution and Diversity of Legume Symbiosis , 2008 .
[30] F. Gentili,et al. Ecosystem controls on nitrogen fixation in boreal feather moss communities , 2007, Oecologia.
[31] M. Athar,et al. Scanning electron microscopic observations on micro-organisms in the root nodules of Tribulus terrestris L. (Zygophyllaceae). , 2006, Scanning.
[32] P. Högberg,et al. Ectomycorrhizae in coastal miombo woodland of Tanzania , 1981, Plant and Soil.
[33] B. Dreyfus,et al. Occurrence of nodulation in unexplored leguminous trees native to the West African tropical rainforest and inoculation response of native species useful in reforestation. , 2005, The New phytologist.
[34] B. Bergman,et al. Root-based N2-fixing Symbioses: Legumes, Actinorhizal Plants, Parasponia sp. and Cycads , 2005, Plant and Soil.
[35] W. Vyverman,et al. Polymerase chain reaction denaturing gradient gel electrophoresis analysis of the N2-fixing bacterial diversity in soil under Acacia tortilis ssp. raddiana and Balanites aegyptiaca in the dryland part of Senegal. , 2004, Environmental microbiology.
[36] J. Sprent,et al. Phenetic investigation of non-nodulating African species ofAcacia (Leguminosae) using morphological and molecular markers , 1997, Plant Systematics and Evolution.
[37] Fabian M Jaksic,et al. Spatial distribution of soil nutrients and ephemeral plants underneath and outside the canopy of Porlieria chilensis shrubs (Zygophyllaceae) in arid coastal Chile , 1993, Oecologia.
[38] G. Shearer,et al. Estimates of N2-fixation from variation in the natural abundance of 15N in Sonoran desert ecosystems , 1983, Oecologia.
[39] J. Lundberg,et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .
[40] W. Silvester,et al. Colonization dynamics and facilitative impacts of a nitrogen-fixing shrub in primary succession , 2003 .
[41] S. Schmidt,et al. δ15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status , 2003, Oecologia.
[42] M. Luckow,et al. A PHYLOGENETIC ANALYSIS OF THE MIMOSOIDEAE (LEGUMINOSAE) BASED ON CHLOROPLAST DNA SEQUENCE DATA , 2003 .
[43] K. Giller,et al. Symbiotic specificity of tropical tree rhizobia for host legumes. , 2001, The New phytologist.
[44] R. Pennington,et al. The dalbergioid legumes (Fabaceae): delimitation of a pantropical monophyletic clade. , 2001, American journal of botany.
[45] B. Bergman,et al. Tansley Review No. 116: Cyanobacterium-plant symbioses. , 2000, The New phytologist.
[46] T. Jaffré,et al. Abundance of Frankia from Gymnostoma spp. in the rhizosphere of Alphitonia neocaledonica, a non-nodulated Rhamnaceae endemicto New Caledonia , 2000 .
[47] J. Roggy,et al. Nitrogen‐fixing legumes and silvigenesis in a rain forest in French Guiana: a taxonomic and ecological approach , 1999 .
[48] D. Schimel,et al. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems , 1999 .
[49] A. Mahmood,et al. Cyanobacterial root nodules in Tribulus terrestris L. (Zygophyllaceae) , 1998 .
[50] D. Soltis,et al. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. , 1995, Proceedings of the National Academy of Sciences of the United States of America.
[51] M. F. D. Silva,et al. Occurrence of nodulation in legume species in the Amazon region of Brazil , 1992 .
[52] I. Miller. Bacterial Leaf Nodule Symbiosis , 1990 .
[53] W. Jarrell,et al. Depth Distribution and Seasonal Populations of Mesquite‐Nodulating Rhizobia in Warm Desert Ecosystems , 1988 .
[54] M. Silva,et al. Associações Rhizobium - Leguminosas no Estado de Rondõnia , 1987 .
[55] G. Shearer,et al. Corrigendum - N2-Fixation in Field Settings: Estimations Based on Natural 15N Abundance , 1986 .
[56] G. Shearer,et al. N2-Fixation in Field Settings: Estimations Based on Natural 15N Abundance , 1986 .
[57] J. Halliday. Register of nodulation reports for leguminous trees and other arboreal genera with nitrogen fixing members. , 1984 .
[58] S. M. Faria,et al. LEVANTAMENTO DA NODULAÇÃO DE LEGUMINOSAS FLORESTAIS NATIVAS NA REGIÃO SUDESTE DO BRASIL , 1984 .
[59] G. Bond,et al. Taxonomy and distribution of non-legume nitrogen-fixing systems , 1983 .
[60] H. Fowler,et al. The effects of subterranean termite removal on desert soil nitrogen and ephemeral flora , 1982 .
[61] M. Trinick. GROWTH OF PARASPONIA IN AGAR TUBE CULTURE AND SYMBIOTIC EFFECTIVENESS OF ISOLATES FROM PARASPONIA SPP. , 1980 .
[62] G. Lim. Nodulation of tropical legumes in Singapore. , 1977 .
[63] M. Mostafa,et al. Bacterial isolates from root nodules of Zygophyllaceae. , 1951, Nature.
[64] Y. Sabet. Bacterial root nodules in the Zygophyllaceae. , 1946, Nature.