Global database of plants with root‐symbiotic nitrogen fixation: NodDB

Root symbiotic associations with Nfixing bacteria and mycorrhizal fungi are important evolutionary adaptations of plants to compete for nutrients. Nitrogenfixing plant–bacterial associations are widely distributed across all terrestrial biomes and continents apart from Antarctica. Nodulated plants form important components of plant communities, especially in Nlimited early successional ecosystems, riparian habitats and tropical savanna and shrubland biomes (Cleveland et al., 1999). In early successional habitats, Nfixing plants and their root symbiotic microbes contribute to soil development and facilitate recruitment of other plant species and consumers (Walker, Clarkson, Silvester, & Clarkson, 2003). The global symbiotic biological N fixation amounts roughly to 45 Mt annually, which is the main contributor to natural terrestrial N sources (Vitousek, Menge, Reed, & Cleveland, 2013). Nitrogenfixing mutualistic relationships between plant roots and bacteria have evolved multiple times in both partners (Rai, Söderbäck, & Bergman, 2000; Santi, Bogusz, & Franche, 2013; Werner, Cornwell, Sprent, Kattge, & Kiers, 2014; Doyle, 2016). The differentiated forms of associations occur as root (or additionally stem) nodules, but in multiple instances plants host Nfixing bacteria in undifferentiated leaf, stem or root tissues (Vessey, Pawlowski, & Bergman, 2005; Santi et al., 2013). Rhizobiaceae (αproteobacteria) and Burkholderiaceae (βproteobacteria) are the most well known Nfixing bacterial groups that nodulate mostly legumes (Fabaceae; Sprent, Ardley, & James, 2017). A small genus Parasponia (Cannabaceae) has evolved independently symbiotic associations with Rhizobiaceae (Trinick, 1980). In addition, rhizobial root nodules have been reported in three zygophyllaceous genera, Tribulus, Fagonia and Zygophyllum (Mostafa & Mahmoud, 1951), but Received: 20 November 2017 | Accepted: 12 February 2018 DOI: 10.1111/jvs.12627

[1]  J. H. Burns,et al.  Symbioses with nitrogen-fixing bacteria: nodulation and phylogenetic data across legume genera. , 2017, Ecology.

[2]  E. James,et al.  Biogeography of nodulated legumes and their nitrogen-fixing symbionts. , 2017, The New phytologist.

[3]  F. Forest,et al.  Insights on the evolutionary origin of Detarioideae, a clade of ecologically dominant tropical African trees. , 2017, The New phytologist.

[4]  Rafael Barbosa Pinto,et al.  A new subfamily classification of the leguminosae based on a taxonomically comprehensive phylogeny , 2017 .

[5]  Mark C. Brundrett Global Diversity and Importance of Mycorrhizal and Nonmycorrhizal Plants , 2017 .

[6]  J. Doyle Chasing unicorns: Nodulation origins and the paradox of novelty. , 2016, American journal of botany.

[7]  J. G. Burleigh,et al.  Phylogeny of the Rosidae: A dense taxon sampling analysis , 2016 .

[8]  H. Qian,et al.  An updated megaphylogeny of plants, a tool for generating plant phylogenies, and an analysis of phylogenetic community structure , 2016 .

[9]  G. Kadereit,et al.  Evolution of leaf anatomy in arid environments - A case study in southern African Tetraena and Roepera (Zygophyllaceae). , 2016, Molecular phylogenetics and evolution.

[10]  Kathryn Larson-Johnson Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales. , 2016, The New phytologist.

[11]  D. Soltis,et al.  Large-scale phylogenetic analyses reveal multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms associated with climate change , 2015, Scientific Reports.

[12]  S. Magallón,et al.  A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. , 2015, The New phytologist.

[13]  Alexandre Antonelli,et al.  Estimating species diversity and distribution in the era of Big Data: to what extent can we trust public databases? , 2015, Global ecology and biogeography : a journal of macroecology.

[14]  G. Prenner,et al.  Filling in the gaps of the papilionoid legume phylogeny: the enigmatic Amazonian genus Petaladenium is a new branch of the early-diverging Amburaneae clade. , 2015, Molecular phylogenetics and evolution.

[15]  H. Peter Linder,et al.  Do Mediterranean‐type ecosystems have a common history?—Insights from the Buckthorn family (Rhamnaceae) , 2015, Evolution; international journal of organic evolution.

[16]  J. Shaw,et al.  Diversification of almonds, peaches, plums and cherries - molecular systematics and biogeographic history of Prunus (Rosaceae). , 2014, Molecular phylogenetics and evolution.

[17]  J. Kattge,et al.  University of Dundee A single evolutionary innovation drives the deep evolution of symbiotic N 2-fixation in angiosperms , 2014 .

[18]  R. Pennington,et al.  Reconstructing the deep-branching relationships of the papilionoid legumes , 2013 .

[19]  O. Maurin,et al.  Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia , 2013 .

[20]  S. Reed,et al.  Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[21]  J. Njoka,et al.  Nitrogen Fixation by Natural Populations of Acacia Senegal in the Drylands of Kenya Using 15N Natural Abundance , 2013 .

[22]  Claudine Franche,et al.  Biological nitrogen fixation in non-legume plants. , 2013, Annals of botany.

[23]  R. Pennington,et al.  Revisiting the phylogeny of papilionoid legumes: New insights from comprehensively sampled early-branching lineages. , 2012, American journal of botany.

[24]  S. Higgins,et al.  TRY – a global database of plant traits , 2011, Global Change Biology.

[25]  M. VAN DER BANK,et al.  The evolutionary history and biogeography of Mimosoideae (Leguminosae): an emphasis on African acacias. , 2010, Molecular phylogenetics and evolution.

[26]  K. Huss-Danell,et al.  Life in soil by the actinorhizal root nodule endophyte Frankia. A review , 2010, Symbiosis.

[27]  C. Franche,et al.  Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants , 2009, Plant and Soil.

[28]  P. Herendeen,et al.  Phylogenetic patterns and diversification in the caesalpinioid legumes , 2008 .

[29]  J. Sprent Evolution and Diversity of Legume Symbiosis , 2008 .

[30]  F. Gentili,et al.  Ecosystem controls on nitrogen fixation in boreal feather moss communities , 2007, Oecologia.

[31]  M. Athar,et al.  Scanning electron microscopic observations on micro-organisms in the root nodules of Tribulus terrestris L. (Zygophyllaceae). , 2006, Scanning.

[32]  P. Högberg,et al.  Ectomycorrhizae in coastal miombo woodland of Tanzania , 1981, Plant and Soil.

[33]  B. Dreyfus,et al.  Occurrence of nodulation in unexplored leguminous trees native to the West African tropical rainforest and inoculation response of native species useful in reforestation. , 2005, The New phytologist.

[34]  B. Bergman,et al.  Root-based N2-fixing Symbioses: Legumes, Actinorhizal Plants, Parasponia sp. and Cycads , 2005, Plant and Soil.

[35]  W. Vyverman,et al.  Polymerase chain reaction denaturing gradient gel electrophoresis analysis of the N2-fixing bacterial diversity in soil under Acacia tortilis ssp. raddiana and Balanites aegyptiaca in the dryland part of Senegal. , 2004, Environmental microbiology.

[36]  J. Sprent,et al.  Phenetic investigation of non-nodulating African species ofAcacia (Leguminosae) using morphological and molecular markers , 1997, Plant Systematics and Evolution.

[37]  Fabian M Jaksic,et al.  Spatial distribution of soil nutrients and ephemeral plants underneath and outside the canopy of Porlieria chilensis shrubs (Zygophyllaceae) in arid coastal Chile , 1993, Oecologia.

[38]  G. Shearer,et al.  Estimates of N2-fixation from variation in the natural abundance of 15N in Sonoran desert ecosystems , 1983, Oecologia.

[39]  J. Lundberg,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .

[40]  W. Silvester,et al.  Colonization dynamics and facilitative impacts of a nitrogen-fixing shrub in primary succession , 2003 .

[41]  S. Schmidt,et al.  δ15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status , 2003, Oecologia.

[42]  M. Luckow,et al.  A PHYLOGENETIC ANALYSIS OF THE MIMOSOIDEAE (LEGUMINOSAE) BASED ON CHLOROPLAST DNA SEQUENCE DATA , 2003 .

[43]  K. Giller,et al.  Symbiotic specificity of tropical tree rhizobia for host legumes. , 2001, The New phytologist.

[44]  R. Pennington,et al.  The dalbergioid legumes (Fabaceae): delimitation of a pantropical monophyletic clade. , 2001, American journal of botany.

[45]  B. Bergman,et al.  Tansley Review No. 116: Cyanobacterium-plant symbioses. , 2000, The New phytologist.

[46]  T. Jaffré,et al.  Abundance of Frankia from Gymnostoma spp. in the rhizosphere of Alphitonia neocaledonica, a non-nodulated Rhamnaceae endemicto New Caledonia , 2000 .

[47]  J. Roggy,et al.  Nitrogen‐fixing legumes and silvigenesis in a rain forest in French Guiana: a taxonomic and ecological approach , 1999 .

[48]  D. Schimel,et al.  Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems , 1999 .

[49]  A. Mahmood,et al.  Cyanobacterial root nodules in Tribulus terrestris L. (Zygophyllaceae) , 1998 .

[50]  D. Soltis,et al.  Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[51]  M. F. D. Silva,et al.  Occurrence of nodulation in legume species in the Amazon region of Brazil , 1992 .

[52]  I. Miller Bacterial Leaf Nodule Symbiosis , 1990 .

[53]  W. Jarrell,et al.  Depth Distribution and Seasonal Populations of Mesquite‐Nodulating Rhizobia in Warm Desert Ecosystems , 1988 .

[54]  M. Silva,et al.  Associações Rhizobium - Leguminosas no Estado de Rondõnia , 1987 .

[55]  G. Shearer,et al.  Corrigendum - N2-Fixation in Field Settings: Estimations Based on Natural 15N Abundance , 1986 .

[56]  G. Shearer,et al.  N2-Fixation in Field Settings: Estimations Based on Natural 15N Abundance , 1986 .

[57]  J. Halliday Register of nodulation reports for leguminous trees and other arboreal genera with nitrogen fixing members. , 1984 .

[58]  S. M. Faria,et al.  LEVANTAMENTO DA NODULAÇÃO DE LEGUMINOSAS FLORESTAIS NATIVAS NA REGIÃO SUDESTE DO BRASIL , 1984 .

[59]  G. Bond,et al.  Taxonomy and distribution of non-legume nitrogen-fixing systems , 1983 .

[60]  H. Fowler,et al.  The effects of subterranean termite removal on desert soil nitrogen and ephemeral flora , 1982 .

[61]  M. Trinick GROWTH OF PARASPONIA IN AGAR TUBE CULTURE AND SYMBIOTIC EFFECTIVENESS OF ISOLATES FROM PARASPONIA SPP. , 1980 .

[62]  G. Lim Nodulation of tropical legumes in Singapore. , 1977 .

[63]  M. Mostafa,et al.  Bacterial isolates from root nodules of Zygophyllaceae. , 1951, Nature.

[64]  Y. Sabet Bacterial root nodules in the Zygophyllaceae. , 1946, Nature.