An application of graph pebbling to zero-sum sequences in abelian groups

A sequence of elements of a finite group G is called a zero-sum sequence if it sums to the identity of G. The study of zero-sum sequences has a long history with many important applications in number theory and group theory. In 1989 Kleitman and Lemke, and independently Chung, proved a strengthening of a number theoretic conjecture of Erdos and Lemke. Kleitman and Lemke then made more general conjectures for finite groups, strengthening the requirements of zero-sum sequences. In this paper we prove their conjecture in the case of abelian groups. Namely, we use graph pebbling to prove that for every sequence (g_k)_{k=1}^{|G|} of |G| elements of a finite abelian group G there is a nonempty subsequence (g_k)_{k in K} such that sum_{k in K}g_k=0_G and sum_{k in K}1/|g_k|\le 1, where |g| is the order of the element g in G.

[1]  Xin Jin,et al.  Weighted sums in finite cyclic groups , 2004, Discret. Math..

[2]  Melvyn B. Nathanson,et al.  Additive Number Theory: Inverse Problems and the Geometry of Sumsets , 1996 .

[3]  Weidong Gao,et al.  On the structure of sequences with forbidden zero-sum subsequences , 2003 .

[4]  Daniel J. Kleitman,et al.  An Addition Theorem on the Integers Modulo n , 1989 .

[5]  Glenn H. Hurlbert,et al.  Pebbling in diameter two graphs and products of paths , 1997, J. Graph Theory.

[6]  Noga Alon,et al.  Regular subgraphs of almost regular graphs , 1984, J. Comb. Theory, Ser. B.

[7]  Fan Chung Graham,et al.  Pebbling in Hypercubes , 1989, SIAM J. Discret. Math..

[8]  David Moews,et al.  Pebbling graphs , 1992, J. Comb. Theory, Ser. B.

[9]  David S. Herscovici Graham's pebbling conjecture on products of cycles , 2003, J. Graph Theory.

[10]  Tristan Denley On a Result of Lemke and Kleitman , 1997, Comb. Probab. Comput..

[11]  Andrzej Czygrinow,et al.  A Note on Graph Pebbling , 2002, Graphs Comb..

[12]  Glenn H. Hurlbert,et al.  Cover Pebbling Hypercubes , 2004 .

[13]  T. Friedman,et al.  Optimal pebbling of paths and cycles , 2005 .

[14]  Yair Caro,et al.  Zero-sum problems - A survey , 1996, Discret. Math..

[15]  C. Pomerance,et al.  There are infinitely many Carmichael numbers , 1994 .

[16]  Andrzej Czygrinow,et al.  Thresholds for families of multisets, with an application to graph pebbling , 2003, Discret. Math..

[17]  S. Lang Number Theory III , 1991 .

[18]  Marshall Hall A combinatorial problem on abelian groups , 1952 .

[19]  Alfred Geroldinger On a Conjecture of Kleitman and Lemke , 1993 .

[20]  Andrzej Czygrinow,et al.  Pebbling in dense graphs , 2003, Australas. J Comb..

[21]  Weidong Gao,et al.  Zero-sum problems and coverings by proper cosets , 2003, Eur. J. Comb..

[22]  Weidong Gao On Davenport's constant of finite abelian groups with rank three , 2000, Discret. Math..

[23]  Zhi-Wei Sun Unification of zero-sum problems, subset sums and covers of ℤ , 2003 .

[24]  Zsolt Tuza,et al.  The cover pebbling number of graphs , 2005, Discret. Math..

[25]  A. Ziv,et al.  Theorem in the Additive Number Theory , 2022 .

[26]  David Moews Optimally pebbling hypercubes and powers , 1998, Discret. Math..

[27]  Alfred Geroldinger,et al.  On Davenport's Constant , 1992, J. Comb. Theory, Ser. A.

[28]  Kazuya Kato,et al.  Number Theory 1 , 1999 .

[29]  Nathaniel G. Watson,et al.  Cover pebbling numbers and bounds for certain families of graphs , 2004 .

[30]  Roger Crocker,et al.  A theorem in additive number theory , 1969 .

[31]  van P. Emde Boas,et al.  A combinatorial problem on finite abelian groups, 3 , 1967 .

[32]  Weidong Gao,et al.  A Combinatorial Problem on Finite Abelian Groups , 1996 .