Electron-event representation data enable efficient cryoEM file storage with full preservation of spatial and temporal resolution

Electron-event representation is a new data format for cryoEM that preserves the full temporal and spatial resolution of movies from direct detector device cameras.

[1]  A. Cheng,et al.  Beam-induced motion of vitrified specimen on holey carbon film. , 2012, Journal of structural biology.

[2]  Joachim Frank,et al.  A Fast and Effective Microfluidic Spraying-Plunging Method for High-Resolution Single-Particle Cryo-EM. , 2017, Structure.

[3]  R. Henderson,et al.  Detective quantum efficiency of electron area detectors in electron microscopy , 2009, Ultramicroscopy.

[4]  S. Scheres,et al.  Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles , 2013, eLife.

[5]  Nikolaus Grigorieff,et al.  Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6 , 2015, eLife.

[6]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[7]  Jasenko Zivanov,et al.  A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis , 2018, bioRxiv.

[8]  Z A Ripstein,et al.  Processing of Cryo-EM Movie Data. , 2016, Methods in enzymology.

[9]  D. Agard,et al.  Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM , 2013, Nature Methods.

[10]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[11]  Roberto Marabini,et al.  MRC2014: Extensions to the MRC format header for electron cryo-microscopy and tomography , 2015, Journal of structural biology.

[12]  R Henderson,et al.  Direct Electron Detectors. , 2016, Methods in enzymology.

[13]  Terry A. Welch,et al.  A Technique for High-Performance Data Compression , 1984, Computer.

[14]  S. Scheres Beam-induced motion correction for sub-megadalton cryo-EM particles , 2014, eLife.

[15]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[16]  D. Agard,et al.  Evaluation of super-resolution performance of the K2 electron-counting camera using 2D crystals of aquaporin-0. , 2015, Journal of structural biology.

[17]  Marcus A. Brubaker,et al.  Alignment of cryo-EM movies of individual particles by optimization of image translations. , 2014, Journal of structural biology.

[18]  J. Rubinstein,et al.  Fabrication of carbon films with ∼ 500nm holes for cryo-EM with a direct detector device. , 2014, Journal of structural biology.

[19]  John L Rubinstein,et al.  The resolution dependence of optimal exposures in liquid nitrogen temperature electron cryomicroscopy of catalase crystals. , 2010, Journal of structural biology.

[20]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[21]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[22]  Clinton S Potter,et al.  Reducing cryoEM file storage using lossy image formats. , 2019, Journal of structural biology.

[23]  Sjors H W Scheres,et al.  Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1 , 2020, IUCrJ.

[24]  A. Cheng,et al.  Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. , 2012, Structure.

[25]  R. Henderson,et al.  Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector , 2009, Ultramicroscopy.

[26]  Richard Henderson,et al.  From Electron Crystallography to Single Particle CryoEM (Nobel Lecture). , 2018, Angewandte Chemie.