A semantic approach to concept lattice-based information retrieval

The volume of available information is growing, especially on the web, and in parallel the questions of the users are changing and becoming harder to satisfy. Thus there is a need for organizing the available information in a meaningful way in order to guide and improve document indexing for information retrieval applications taking into account more complex data such as semantic relations. In this paper we show that Formal Concept Analysis (FCA) and concept lattices provide a suitable and powerful support for such a task. Accordingly, we use FCA to compute a concept lattice, which is considered both a semantic index to organize documents and a search space to model terms. We introduce the notions of cousin concepts and classification-based reasoning for navigating the concept lattice and retrieve relevant information based on the content of concepts. Finally, we detail a real-world experiment and show that the present approach has very good capabilities for semantic indexing and document retrieval.

[1]  L. Beran,et al.  [Formal concept analysis]. , 1996, Casopis lekaru ceskych.

[2]  Uta Priss,et al.  Formal concept analysis in information science , 2006, Annu. Rev. Inf. Sci. Technol..

[3]  Emmanuel Nauer,et al.  CreChainDo: an iterative and interactive Web information retrieval system based on lattices , 2009, Int. J. Gen. Syst..

[4]  Sergei O. Kuznetsov,et al.  Pattern Structures for Analyzing Complex Data , 2009, RSFDGrC.

[5]  Claudio Carpineto,et al.  Concept data analysis - theory and applications , 2004 .

[6]  Roland Ducournau,et al.  An object-based representation system for organic synthesis planning , 1994, Int. J. Hum. Comput. Stud..

[7]  Derrick G. Kourie,et al.  AddIntent: A New Incremental Algorithm for Constructing Concept Lattices , 2004, ICFCA.

[8]  Jonas Poelmans,et al.  Text Mining Scientific Papers: A Survey on FCA-Based Information Retrieval Research , 2012, ICDM.

[9]  Sébastien Ferré,et al.  Camelis: a logical information system to organise and browse a collection of documents , 2009, Int. J. Gen. Syst..

[10]  Uta Priss,et al.  Lattice-based information retrieval , 2000 .

[11]  Sébastien Ferré,et al.  Semantic Search: Reconciling Expressive Querying and Exploratory Search , 2011, SEMWEB.

[12]  Amedeo Napoli,et al.  Querying a Bioinformatic Data Sources Registry with Concept Lattices , 2005, ICCS.

[13]  Bernhard Ganter,et al.  Formal Concept Analysis , 2013 .

[14]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[15]  Peter W. Eklund,et al.  FCA-Based Browsing and Searching of a Collection of Images , 2006, ICCS.

[16]  Jonas Poelmans,et al.  Formal Concept Analysis in Knowledge Discovery: A Survey , 2010, ICCS.

[17]  Ronald J. Brachman,et al.  The Process of Knowledge Discovery in Databases , 1996, Advances in Knowledge Discovery and Data Mining.

[18]  Amedeo Napoli,et al.  Using Domain Knowledge to Guide Lattice-based Complex Data Exploration , 2010, ECAI.

[19]  Francisco J. Valverde-Albacete,et al.  Systems vs . Methods : an Analysis of the Affordances of Formal Concept Analysis for Information Retrieval ? , 2013 .

[20]  Anna Formica,et al.  Concept similarity in Formal Concept Analysis: An information content approach , 2008, Knowl. Based Syst..

[21]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[22]  Dekang Lin,et al.  An Information-Theoretic Definition of Similarity , 1998, ICML.

[23]  Claudio Carpineto,et al.  GALOIS: An Order-Theoretic Approach to Conceptual Clustering , 1993, ICML.

[24]  Chabane Djeraba,et al.  Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics , 2008, Advanced Information and Knowledge Processing.

[25]  Claudio Carpineto,et al.  Order-theoretical ranking , 2000, J. Am. Soc. Inf. Sci..

[26]  Peter W. Eklund,et al.  SearchSleuth: The Conceptual Neighbourhood of an Web Query , 2007, CLA.

[27]  S. T. Dumais,et al.  Using latent semantic analysis to improve access to textual information , 1988, CHI '88.

[28]  Sergei O. Kuznetsov,et al.  Comparing performance of algorithms for generating concept lattices , 2002, J. Exp. Theor. Artif. Intell..

[29]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[30]  Claudio Carpineto,et al.  Exploiting the Potential of Concept Lattices for Information Retrieval with CREDO , 2004, J. Univers. Comput. Sci..