lba: An R Package for Latent Budget Analysis

Abstract The latent budget model is a mixture model for compositional data sets in which the entries, a contingency table, may be either realizations from a product multinomial distribution or distribution free. Based on this model, the latent budget analysis considers the interactions of two variables; the explanatory (row) and the response (column) variables. The package lba uses expectation-maximization and active constraints method (ACM) to carry out, respectively, the maximum likelihood and the least squares estimation of the model parameters. It contains three main functions, lba which performs the analysis, goodnessfit for model selection and goodness of fit and the plotting functions plotcorr and plotlba used as a help in the interpretation of the results.

[1]  L. A. Goodman The Analysis of Systems of Qualitative Variables When Some of the Variables Are Unobservable. Part I-A Modified Latent Structure Approach , 1974, American Journal of Sociology.

[2]  On the Resolution of Compositional Datasets into Convex Combinations of Extreme Vectors , 1989 .

[3]  Roberta Siciliano,et al.  Exploratory analysis of three‐way data by simultaneous latent budget model , 1999 .

[4]  C. Clogg Latent Structure Models of Mobility , 1981, American Journal of Sociology.

[5]  R. Siciliano,et al.  Simultaneous latent budget analysis of a set of two way tables with constant row sum data , 1994 .

[6]  Jan de Leeuw,et al.  Constrained latent budget analysis , 1992 .

[7]  Peter G. M. van der Heijden,et al.  A least squares algorithm for a mixture model for compositional data , 1999 .

[8]  Juan M. C. Larrosa,et al.  M P Ra a Latent Budget Analysis Approach to Classification: Examples from Economics a Latent Budget Analysis Approach to Classification Examples from Economics , 2005 .

[9]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[10]  Uwe Ligges,et al.  Scatterplot3d - an R package for visualizing multivariate data , 2003 .

[11]  P. Mazzoleni,et al.  Petro-archaeometric characterization of potteries from a kiln in Adrano, Sicily , 2015, Heritage Science.

[12]  P. V. D. van der Heijden,et al.  On the Identifiability in the Latent Budget Model , 1999 .

[13]  Peter G. M. van der Heijden,et al.  The EM algorithm for latent class analysis with equality constraints , 1992 .

[14]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[15]  Christine H Morton,et al.  Pregnancy-Related Mortality in California: Causes, Characteristics, and Improvement Opportunities , 2015, Obstetrics and gynecology.

[16]  L. Andries van der Ark,et al.  Contributions to Latent Budget Analysis; A Tool for the Analysis of Compositional Data , 1999 .

[17]  Ab Mooijaart,et al.  Unconditional Latent Budget Analysis: a Neural Network Approach , 2001 .

[18]  P.G.M. Van der Heijden,et al.  The analysis of time-budgets with a latent time-budget model. , 1988 .

[19]  Roger Ros-Freixedes,et al.  On the Compositional Analysis of Fatty Acids in Pork , 2014 .

[20]  Jan de Leeuw,et al.  A latent time–budget model , 1990 .

[21]  Massimo Aria,et al.  Neural Budget Networks of Sensorial Data , 2003 .