On a variance reduction technique for micro–macro simulations of polymeric fluids

Abstract The micro–macro simulations of polymeric fluids couple the mass and momentum conservation equations at the macroscopic level, with a stochastic differential equation which models the evolution of the polymer configurations at the microscopic level (Brownian dynamics simulation). Accordingly, the system is discretized by a finite element method coupled with a Monte Carlo method. All the discrete variables are random, and the accuracy of the result highly depends on the variance of these random variables. We give here some elements of numerical analysis on the crucial issue of variance reduction in order to get results of a better quality for a given computational cost. The present analytical study only deals with a one-dimensional case, but nevertheless gives a track for computational strategies that may apply to the more physically relevant two- and three-dimensional cases.

[1]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[2]  Robert C. Armstrong,et al.  Dynamics of polymeric liquids. Volume 2: Kinetic Theory By R. Ryron Bird, Charles F. Curtis, Robert C. Armstrong, and Ole Hassager, John Wiley & Sons, Inc., New York, 2nd Ed., 1987, 437 + xxi pp. , 1989 .

[3]  Weinan E,et al.  Convergence of a Stochastic Method for the Modeling of Polymeric Fluids , 2002 .

[4]  Hans Christian Öttinger,et al.  Variance reduced simulations of polymer dynamics , 1996 .

[5]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[6]  Curtiss,et al.  Dynamics of Polymeric Liquids , .

[7]  Hans Christian Öttinger,et al.  Stochastic Processes in Polymeric Fluids , 1996 .

[8]  C. Petrie Dynamics of polymeric liquids. Volume 1. Fluid mechanics (2nd ed) : R.B. Bird, R.C. Armstrong and O. Hassager, Wiley-Interscience, New York, NY, 1987, 649 + xxi pages, ISBN 0-471-80245-X (V.1), price US$ 69.95 , 1988 .

[9]  Hans Christian Öttinger,et al.  Brownian configuration fields and variance reduced CONNFFESSIT , 1997 .

[10]  T. Lelièvre Optimal error estimate for the CONNFFESSIT approach in a simple case , 2004 .

[11]  Marco Picasso,et al.  Variance reduction methods for CONNFFESSIT-like simulations , 1999 .

[12]  H. C. Öttinger,et al.  Calculation of viscoelastic flow using molecular models: the connffessit approach , 1993 .

[13]  R. Keunings,et al.  The Lagrangian particle method for macroscopic and micro-macro viscoelastic flow computations , 1998 .

[14]  Benjamin Jourdain,et al.  NUMERICAL ANALYSIS OF MICRO–MACRO SIMULATIONS OF POLYMERIC FLUID FLOWS: A SIMPLE CASE , 2002 .

[15]  Manuel Laso,et al.  2-D time-dependent viscoelastic flow calculations using CONNFFESSIT , 1997 .

[16]  van den Bhaa Ben Brule,et al.  Simulation of viscoelastic flows using Brownian configuration fields , 1997 .