Spatial ordination of vegetation data using a generalization of Wartenberg's multivariate spatial correlation

Question: Are there spatial structures in the composition of plant communities? Methods: Identification and measurement of spatial structures is a topic of great interest in plant ecology. Univariate measurements of spatial autocorrelation such as Moran’s I and Geary’s c are widely used, but extensions to the multivariate case (i.e. multi-species) are rare. Here, we propose a multivariate spatial analysis based on Moran’s I (MULTISPATI) by introducing a row-sum standardized spatial weight matrix in the statistical triplet notation. This analysis, which is a generalization of Wartenberg’s approach to multivariate spatial correlation, would imply a compromise between the relations among many variables (multivariate analysis) and their spatial structure (autocorrelation). MULTISPATI approach is very flexible and can handle various kinds of data (quantitative and/or qualitative data, contingency tables). A study is presented to illustrate the method using a spatial version of Correspondence Analysis. Location: Territoire d’Etude et d’Experimentation de TroisFontaines (eastern France). Results: Ordination of vegetation plots by this spatial analysis is quite robust with reference to rare species and highlights spatial patterns related to soil properties.

[1]  D. Griffith Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses , 2000 .

[2]  J. Ord,et al.  Spatial and temporal analysis in ecology , 1981 .

[3]  C. Braak Correspondence Analysis of Incidence and Abundance Data:Properties in Terms of a Unimodal Response Model , 1985 .

[4]  Jean Thioulouse,et al.  The ade4 package - I : One-table methods , 2004 .

[5]  Yves Le Foll Pondération des distances en analyse factorielle , 1982 .

[6]  Jean Thioulouse,et al.  CO‐INERTIA ANALYSIS AND THE LINKING OF ECOLOGICAL DATA TABLES , 2003 .

[7]  R. Whittaker,et al.  GRADIENT ANALYSIS OF VEGETATION* , 1967, Biological reviews of the Cambridge Philosophical Society.

[8]  Daniel A. Griffith,et al.  SPATIAL AUTOCORRELATION and EIGENFUNCTIONS OF THE GEOGRAPHIC WEIGHTS MATRIX ACCOMPANYING GEO‐REFERENCED DATA , 1996 .

[9]  J. Braun-Blanquet,et al.  PLANT SOCIOLOGY. A STUDY OF PLANT COMMUNITIES , 1934 .

[10]  A. Getis,et al.  Comparative Spatial Filtering in Regression Analysis , 2002 .

[11]  Michel Tenenhaus,et al.  An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data , 1985 .

[12]  Daniel Wartenberg,et al.  Multivariate Spatial Correlation: A Method for Exploratory Geographical Analysis , 2010 .

[13]  P. Legendre,et al.  Variation partitioning of species data matrices: estimation and comparison of fractions. , 2006, Ecology.

[14]  M. Greenacre Theory of Correspondence Analysis , 2007 .

[15]  C. Bradshaw,et al.  Minimum viable population size: A meta-analysis of 30 years of published estimates , 2007 .

[16]  Stéphane Dray,et al.  Multivariate Analysis of Incomplete Mapped Data , 2003, Trans. GIS.

[17]  Daniel A. Griffith,et al.  A linear regression solution to the spatial autocorrelation problem , 2000, J. Geogr. Syst..

[18]  R. Geary,et al.  The Contiguity Ratio and Statistical Mapping , 1954 .

[19]  J. Braun-Blanquet,et al.  Plant Sociology: the Study of Plant Communities , 1983, Nature.

[20]  Sang-Il Lee,et al.  Developing a bivariate spatial association measure: An integration of Pearson's r and Moran's I , 2001, J. Geogr. Syst..

[21]  P V K IYER,et al.  The first and second moments of some probability distributions arising from points on a lattice and their application. , 1949, Biometrika.

[22]  M. Cappellini,et al.  CO-ORDINATING EDITOR , 2008 .

[23]  François Bavaud,et al.  MODELS FOR SPATIAL WEIGHTS: A SYSTEMATIC LOOK , 2010 .

[24]  Daniel Chessel,et al.  Co-structure de deux tableaux totalement appariés , 1995 .

[25]  H. Kiers Simple structure in component analysis techniques for mixtures of qualitative and quantitative variables , 1991 .

[26]  S. Dolédec,et al.  Co‐inertia analysis: an alternative method for studying species–environment relationships , 1994 .

[27]  Pierre Legendre,et al.  All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices , 2002 .

[28]  Wojtek J. Krzanowski,et al.  Extensions to Spatial Factor Methods with an Illustration in Geochemistry , 2000 .

[29]  D. Goodall,et al.  Objective methods for the classification of vegetation. III. An essay in the use of factor analysis , 1954 .

[30]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[31]  F. Agterberg,et al.  SPFAC: a FORTRAN-77 program for spatial factor analysis of multivariate data , 1991 .

[32]  Brigitte Escofier,et al.  Analyse factorielle lissée et analyse factorielle des différences locales , 1990 .

[33]  C. Sprenger,et al.  On Extreme Values of Moran's I and Geary's c , 2010 .

[34]  Jean Thioulouse,et al.  Multivariate analysis of spatial patterns: a unified approach to local and global structures , 1995, Environmental and Ecological Statistics.

[35]  R. Kadmon,et al.  Floristic variation in Israel: a GIS analysis , 1997 .

[36]  P. Moran The Interpretation of Statistical Maps , 1948 .

[37]  Distribution and abundance patterns of a newly colonizing species in Tunisian oases: the Common Blackbird Turdus merula , 2003 .

[38]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[39]  F. Cailliez,et al.  Introduction à l'analyse des données , 1976 .

[40]  P. Legendre,et al.  Partialling out the spatial component of ecological variation , 1992 .

[41]  Grazia Bella,et al.  Including spatial contiguity information in the analysis of multispecific patterns , 1996, Environmental and Ecological Statistics.

[42]  Y. Escoufier,et al.  The Duality Diagram: A Means for Better Practical Applications , 1987 .

[43]  Manfred M. Fischer,et al.  Spatial Analytical Perspectives on GIS , 2019 .

[44]  L. Anselin Local Indicators of Spatial Association—LISA , 2010 .

[45]  N. Pettorelli,et al.  Coupling Principal Component Analysis and GIS to map deer habitats , 2005 .

[46]  “Flora Europaea” , 1959, Nature.

[47]  Jean Thioulouse,et al.  Procrustean co-inertia analysis for the linking of multivariate datasets , 2003 .

[48]  K. Ord Estimation Methods for Models of Spatial Interaction , 1975 .

[49]  Daniel A. Griffith,et al.  A Variance-Stabilizing Coding Scheme for Spatial Link Matrices , 1999 .

[50]  Stéphane Dray,et al.  Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM) , 2006 .

[51]  L. Anselin Local Indicators of Spatial Association—LISA , 2010 .

[52]  C. Braak,et al.  Ecological amplitudes of plant species and the internal consistency of Ellenberg’s indicator values for moisture , 1987 .

[53]  Calyampudi R. Rao The use and interpretation of principal component analysis in applied research , 1964 .

[54]  O Leg S Mirnov,et al.  Visualizing Multivariate Spatial Correlation with Dynamically Linked Windows , 2002 .