Tunable plasmons in atomically thin gold nanodisks

The ability to modulate light at high speeds is of paramount importance for telecommunications, information processing and medical imaging technologies. This has stimulated intense efforts to master optoelectronic switching at visible and near-infrared frequencies, although coping with current computer speeds in integrated architectures still remains a major challenge. As a partial success, mid-infrared light modulation has been recently achieved through gating patterned graphene. Here we show that atomically thin noble metal nanoislands can extend optical modulation to the visible and near-infrared spectral range. We find plasmons in thin metal nanodisks to produce similar absorption cross-sections as spherical particles of the same diameter. Using realistic levels of electrical doping, plasmons are shifted by about half their width, thus leading to a factor-of-two change in light absorption. These results, which we substantiate on microscopic quantum theory of the optical response, hold great potential for the development of electrical visible and near-infrared light modulation in integrable, nanoscale devices.

[1]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[2]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[3]  Risto M. Nieminen,et al.  Atomistic approach for simulating plasmons in nanostructures , 2014 .

[4]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[5]  D. P. O'Neal,et al.  Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. , 2004, Cancer letters.

[6]  G. Armelles,et al.  Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities , 2013 .

[7]  Vassilios Yannopapas,et al.  MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals , 2000 .

[8]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[9]  D. Pines,et al.  The theory of quantum liquids , 1968 .

[10]  Sukosin Thongrattanasiri,et al.  Plasmons in electrostatically doped graphene , 2012, 1205.3381.

[11]  Liberato Manna,et al.  New materials for tunable plasmonic colloidal nanocrystals. , 2014, Chemical Society reviews.

[12]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[13]  E. Bauer,et al.  Gold monolayers on silicon single crystal surfaces , 1981 .

[14]  Min Seok Jang,et al.  Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. , 2013, Nano letters.

[15]  H. Kimble,et al.  Trapping atoms using nanoscale quantum vacuum forces , 2013, Nature Communications.

[16]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[17]  R. Mitrić,et al.  Ab initio simulations of light propagation in silver cluster nanostructures , 2014 .

[18]  L. Liz‐Marzán,et al.  Light concentration at the nanometer scale , 2010 .

[19]  Sukosin Thongrattanasiri,et al.  Complete optical absorption in periodically patterned graphene. , 2012, Physical review letters.

[20]  P. Nordlander,et al.  Tunable molecular plasmons in polycyclic aromatic hydrocarbons. , 2013, ACS nano.

[21]  Paul Mulvaney,et al.  Drastic Surface Plasmon Mode Shifts in Gold Nanorods Due to Electron Charging , 2006 .

[22]  P. Ajayan,et al.  Gated tunability and hybridization of localized plasmons in nanostructured graphene. , 2013, ACS nano.

[23]  Luis M Liz-Marzán,et al.  Shape control in gold nanoparticle synthesis. , 2008, Chemical Society reviews.

[24]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[25]  Yuri S. Kivshar,et al.  Active and tunable metamaterials , 2011 .

[26]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[27]  D. Tsai,et al.  Micromachined tunable metamaterials: a review , 2012 .

[28]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[29]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[30]  Javier Aizpurua,et al.  All-optical control of a single plasmonic nanoantenna-ITO hybrid. , 2011, Nano letters.

[31]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[32]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[33]  H. Atwater,et al.  Unity-order index change in transparent conducting oxides at visible frequencies. , 2010, Nano letters (Print).

[34]  L. Manna,et al.  New Materials for Tunable Plasmonic Colloidal Nanocrystals , 2014 .

[35]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[36]  Walter Kohn,et al.  Theory of Metal Surfaces: Charge Density and Surface Energy , 1970 .

[37]  Liebsch Surface-plasmon dispersion and size dependence of Mie resonance: Silver versus simple metals. , 1993, Physical review. B, Condensed matter.

[38]  Vassilios Yannopapas,et al.  Heterostructures of photonic crystals: frequency bands and transmission coefficients , 1998 .

[39]  Chih-Yu Chao,et al.  Electrically controlled surface plasmon resonance frequency of gold nanorods , 2006 .

[40]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[41]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[42]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[43]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[44]  S. Thongrattanasiri,et al.  Plasmons driven by single electrons in graphene nanoislands , 2013, 1303.2088.

[45]  M. Cortie,et al.  Preparation of nanoscale gold structures by nanolithography , 2007 .

[46]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[47]  F. G. D. Abajo,et al.  Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .

[48]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.