Photophysikalische und photochemische Eigenschaften von Metalldithiolenen

Die Bis(dithiolen)-Komplexe des Typs [ML2][NBu4]2 (1–6), M = Zn, Cd, Hg, L = cyclisches oder acyclisches 1,2-Ethylendithiolat, fluoreszieren und phosphoreszieren in Ethanol oder 2-Methyltetrahydrofuranglas bei 77 K. Eine Emission bei Raumtemperatur wird nur im Falle der Komplexe mit aromatischen Liganden (5, 6) erhalten. In den Komplexen 1–3 mit acyclischen Liganden stammt der uberwiegende Teil der Fluoreszenz von einem photochemisch gebildeten Monodithiolen-Komplex und entspricht dem Emissionsspektrum von [LZn(NH3)2]. Als photochemischer Primarschritt wird im Falle der acyclischen Liganden eine cis-trans-Isomerisierung des Liganden, im Falle der cyclischen Liganden eine reversible Offnung der M–S-Bindung angenommen. Emissions- und Zersetzungsquantenausbeuten liegen im Bereich von 0.01–0.08 und sind weder vom Losungsmittel noch von der Belichtungswellenlange abhangig. Den in Absorption und Emission beobachteten angeregten Zustanden wird ein uberwiegender Intraligandcharakter zugeordnet. Photophysical and Photochemical Properties of Metal Dithiolenes Bis(dithiolene) complexes of the type [ML2][NBu4] (1–6), M = Zn, Cd, Hg, L = cyclic or acyclic 1,2-ethylenedithiolate, fluoresce and phosphoresce in ethanol or 2-methyltetrahydrofuran glass at 77 K. Emission at room temperature is found only in the case of complexes with aromatic ligands (5, 6). In the case of compounds with acyclic ligands (1–3) the major part of the fluorescence originates from a photochemically produced monodithiolene complex and matches the emission spectrum of [LZn(NH3)2]. The primary photoprocess is assumed to be ligand cis-trans isomerisation in the case of acyclic ligands and reversible M–S cleavage in the case of cyclic ligands. Quantum yields for emission and decomposition are in the range of 0.01 to 0.08 and do not depend on solvent or irradiation wavelength. Predominant intraligand character is assigned to the excited states observed in absorption and emission.

[1]  H. Kisch,et al.  Catalytic photoproduction of hydrogen from water in the presence of metal sulfur complexes and reducing agents , 1983 .

[2]  Curtis E. Johnson,et al.  LUMINESCENT IRIDIUM(I), RHODIUM(I), AND PLATINUM(II) DITHIOLATE COMPLEXES , 1983 .

[3]  D. Dooley,et al.  Photooxidation of bis(maleonitriledithiolate) complexes, [M(S2C2(CN)2)2]2- (M = Ni, Pd, Pt, Co, Cu) , 1982 .

[4]  J. Mulzer,et al.  Three‐Center Diastereoselective Aldol Additions of β‐Lactone Enolates to Aldehydes , 1982 .

[5]  A. Vogler,et al.  Photooxidation of 1,2-dithiolene complexes of nickel, palladium, and platinum in chloroform , 1982 .

[6]  A. Vogler,et al.  Photochemical Formation of and Ligand Exchange in a Cationic Dithiolatonickel Complex , 1981 .

[7]  A. Vogler,et al.  Photooxidation of (2,2'-bipyridine)(3,4-toluenedithiolato)platinum(II) following ligand-to-ligand and charge-transfer excitation , 1981 .

[8]  H. Kisch,et al.  Photoproduction of Hydrogen from Water Catalysed by Metal Sulfur Chelates , 1981 .

[9]  H. Kisch,et al.  Katalysierte Photolyse von Wasser mittels Übergangsmetalldithiolenen , 1980 .

[10]  H. Kisch,et al.  Phatolysis of Water Catalyzed by Transition Metal Dithiolenes , 1980 .

[11]  K. Kobs,et al.  Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements , 1980 .

[12]  E. Hoyer,et al.  1.3-DITHIOL-2-THION-4.5-DITHIOLAT AUS SCHWEFELKOHLENSTOFF UND ALKALIMETALL , 1979 .

[13]  C. Nicolau,et al.  Nanosecond fluorescence anisotropy decays of 1,6-diphenyl-1,3,5-hexatriene in membranes. , 1979, Biochimica et biophysica acta.

[14]  A. Holzwarth,et al.  Phytochrome Models, II. The Fluorescence of Biliverdin Dimethyl Ester1) , 1978 .

[15]  D. Cowan,et al.  Electronic structure of sulfur compounds. 22. The electronic structure of 1,3-dithiole-2-thione and its selenium analogs. Photoelectron spectra and polarized electronic absorption spectra , 1977 .

[16]  G. Stocco Organomercury(II) and organothallium(III) complexes with Cis-1,2-dicyanoethylenedithiolate ion , 1977 .

[17]  T. Ohno,et al.  Excited states of N-salicylidenealkylamines chelating to zinc(II). , 1977 .

[18]  R. Lord,et al.  Cadmium-113 Fourier Transform Nuclear Magnetic Resonance and Raman Spectroscopic Studies of Cadmium(II)-Sulfur Complexes, Including [Cd10(SCH2CH2OH)16]4+ , 1976 .

[19]  J. Zink,et al.  Photoredox photochemistry of tris(dibenzyldithiocarbamato)iron(III) , 1976 .

[20]  隆夫 四ツ柳,et al.  ニッケル(II)による亜鉛(II)-ジメルカプトマレオニトリル錯体の置換反応とそのニッケルの吸光光度定量への応用 , 1976 .

[21]  T. Ohno,et al.  Ligand-Ligand Interaction in the β-Diketonato Complexes of Be2+, Al3+, and Zn2+ , 1974 .

[22]  G. Heinrich,et al.  9,10-diphenylanthracene as a fluorescence quantum yield standard , 1974 .

[23]  N. Uri Some Aspects of Thermal and Photochemical Autoxidation , 1970 .

[24]  I. Bernal,et al.  Metal Complexes of 2,3-Quinoxalinedithiol , 1969 .

[25]  J. Fabian,et al.  LCAO-MO-Berechnungen an schwefelhaltigen π-Systemen. VI. Die UV-S-Absorptionen der 2H-1,3-Dithiol-2-thione , 1967 .

[26]  H. Gray,et al.  The Electronic Structures of Square-Planar Metal Complexes. II. The Complexes of Maleonitriledithiolate with Copper(II), Nickel(II), Palladium(II), and Platinum(II) , 1964 .

[27]  H. Simmons,et al.  Thiacyanocarbons. II. Chemistry of Disodium Dimercaptomaleonitrile , 1962 .