Unraveling abnormal buried interface anion defect passivation mechanisms depending on cation-induced steric hindrance for efficient and stable perovskite solar cells

[1]  W. Choy,et al.  Buried Interface Modification in Perovskite Solar Cells: A Materials Perspective , 2022, Advanced Energy Materials.

[2]  Fuzhi Huang,et al.  Chlorobenzenesulfonic Potassium Salts as the Efficient Multifunctional Passivator for the Buried Interface in Regular Perovskite Solar Cells , 2022, Advanced Energy Materials.

[3]  Hongwei Song,et al.  Passivating buried interface with multifunctional novel ionic liquid containing simultaneously fluorinated anion and cation yielding stable perovskite solar cells over 23% efficiency , 2022, Journal of Energy Chemistry.

[4]  Hao Wei,et al.  Multi‐Level Passivation of MAPbI3 Perovskite for Efficient and Stable Photovoltaics , 2021, Advanced Functional Materials.

[5]  Y. Qi,et al.  CsI Enhanced Buried Interface for Efficient and UV‐Robust Perovskite Solar Cells , 2021, Advanced Energy Materials.

[6]  N. Park,et al.  Methodologies for >30% Efficient Perovskite Solar Cells via Enhancement of Voltage and Fill Factor , 2021, Solar RRL.

[7]  Zhigang Zang,et al.  Interfacial defect passivation and stress release by multifunctional KPF6 modification for planar perovskite solar cells with enhanced efficiency and stability , 2021 .

[8]  Q. Gong,et al.  Buried Interfaces in Halide Perovskite Photovoltaics , 2021, Advanced materials.

[9]  Jia Zhu,et al.  Molecular Interaction Regulates the Performance and Longevity of Defect Passivation for Metal Halide Perovskite Solar Cells. , 2020, Journal of the American Chemical Society.

[10]  R. Tavakoli,et al.  All‐Vacuum‐Processing for Fabrication of Efficient, Large‐Scale, and Flexible Inverted Perovskite Solar Cells , 2020, physica status solidi (RRL) – Rapid Research Letters.

[11]  N. Park,et al.  Materials and Methods for Interface Engineering toward Stable and Efficient Perovskite Solar Cells , 2020 .

[12]  Zhengshan J. Yu,et al.  Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells , 2020, Science.

[13]  Q. Gong,et al.  Minimizing non-radiative recombination losses in perovskite solar cells , 2019, Nature Reviews Materials.

[14]  Dieter Neher,et al.  Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces , 2019, Advanced materials.

[15]  N. Park,et al.  Multifunctional Chemical Linker Imidazoleacetic Acid Hydrochloride for 21% Efficient and Stable Planar Perovskite Solar Cells , 2019, Advanced materials.

[16]  Feng Gao,et al.  Planar perovskite solar cells with long-term stability using ionic liquid additives , 2019, Nature.

[17]  N. Park,et al.  Causes and Solutions of Recombination in Perovskite Solar Cells , 2018, Advanced materials.

[18]  T. Unold,et al.  Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells , 2018, Nature Energy.

[19]  M. Nazeeruddin,et al.  A Strategy to Produce High Efficiency, High Stability Perovskite Solar Cells Using Functionalized Ionic Liquid‐Dopants , 2017, Advanced materials.

[20]  Kai Zhu,et al.  Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films , 2017, Nature Energy.

[21]  Jae-Yup Kim,et al.  Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells , 2016 .

[22]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[23]  M. Ribeiro High viscosity of imidazolium ionic liquids with the hydrogen sulfate anion: a Raman spectroscopy study. , 2012, The journal of physical chemistry. B.

[24]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[25]  D. Shriver,et al.  Vibrational frequencies and intramolecular forces in anionic tin-halogen complexes and related species , 1969 .