Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas.

[1]  N. Blackburn,et al.  Binding of Copper and Silver to Single-Site Variants of Peptidylglycine Monooxygenase Reveals the Structure and Chemistry of the Individual Metal Centers , 2014, Biochemistry.

[2]  Scott I. Hsieh,et al.  Zinc Deficiency Impacts CO2 Assimilation and Disrupts Copper Homeostasis in Chlamydomonas reinhardtii* , 2013, The Journal of Biological Chemistry.

[3]  Khadine A. Higgins,et al.  A new structural paradigm in copper resistance in Streptococcus pneumoniae , 2012, Nature chemical biology.

[4]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[5]  Crysten E. Blaby-Haas,et al.  The ins and outs of algal metal transport. , 2012, Biochimica et biophysica acta.

[6]  M. McEvoy,et al.  Regulation of Cu(I)/Ag(I) efflux genes in Escherichia coli by the sensor kinase CusS. , 2012, FEMS microbiology letters.

[7]  J. D. Robertson,et al.  Lysosome-related organelles in intestinal cells are a zinc storage site in C. elegans. , 2012, Cell metabolism.

[8]  P. Rohloff,et al.  Adaptor Protein-3 (AP-3) Complex Mediates the Biogenesis of Acidocalcisomes and Is Essential for Growth and Virulence of Trypanosoma brucei* , 2011, The Journal of Biological Chemistry.

[9]  M. Pellegrini,et al.  A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii. , 2011, The Plant journal : for cell and molecular biology.

[10]  N. Robinson,et al.  Promiscuity and preferences of metallothioneins: the cell rules , 2011, BMC Biology.

[11]  Evan W. Miller,et al.  Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and X-ray fluorescence microscopy , 2011, Proceedings of the National Academy of Sciences.

[12]  D. Giedroc,et al.  The CRR1 Nutritional Copper Sensor in Chlamydomonas Contains Two Distinct Metal-Responsive Domains[C][W][OA] , 2010, Plant Cell.

[13]  C. Remacle,et al.  Knock-down of the COX3 and COX17 gene expression of cytochrome c oxidase in the unicellular green alga Chlamydomonas reinhardtii , 2010, Plant Molecular Biology.

[14]  B. Lai,et al.  Wilson Disease at a Single Cell Level , 2010, The Journal of Biological Chemistry.

[15]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[16]  Ivano Bertini,et al.  Cellular copper distribution: a mechanistic systems biology approach , 2010, Cellular and Molecular Life Sciences.

[17]  T. Kuroiwa,et al.  Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae. , 2009, The Plant journal : for cell and molecular biology.

[18]  Dianne Ford,et al.  Metalloproteins and metal sensing , 2009, Nature.

[19]  A. Rosenzweig,et al.  Structural biology of copper trafficking. , 2009, Chemical reviews.

[20]  Kazuo T. Suzuki,et al.  Copper accumulation and compartmentalization in mouse fibroblast lacking metallothionein and copper chaperone, Atox1. , 2009, Toxicology and applied pharmacology.

[21]  S. Merchant,et al.  Two Chlamydomonas CTR Copper Transporters with a Novel Cys-Met Motif Are Localized to the Plasma Membrane and Function in Copper Assimilation[W] , 2009, The Plant Cell Online.

[22]  Elizabeth H. Harris,et al.  Introduction to Chlamydomonas and its laboratory use , 2009 .

[23]  L. Hoffmann,et al.  Dynamic NanoSIMS ion imaging of unicellular freshwater algae exposed to copper , 2009, Analytical and bioanalytical chemistry.

[24]  K. Waldron,et al.  How do bacterial cells ensure that metalloproteins get the correct metal? , 2009, Nature Reviews Microbiology.

[25]  Conrad Bessant,et al.  Protein-folding location can regulate manganese-binding versus copper- or zinc-binding , 2008, Nature.

[26]  M. Köck,et al.  Ageladine A, a pyrrole-imidazole alkaloid from marine sponges, is a pH sensitive membrane permeable dye. , 2008, Biochemical and biophysical research communications.

[27]  Janet M. Thornton,et al.  Metal ions in biological catalysis: from enzyme databases to general principles , 2008, JBIC Journal of Biological Inorganic Chemistry.

[28]  P. Weber,et al.  Imaging and 3D elemental characterization of intact bacterial spores by high-resolution secondary ion mass spectrometry. , 2008, Analytical chemistry.

[29]  C. Lim,et al.  Metal binding affinity and selectivity in metalloproteins: insights from computational studies. , 2008, Annual review of biophysics.

[30]  Scott I. Hsieh,et al.  A Ferroxidase Encoded by FOX1 Contributes to Iron Assimilation under Conditions of Poor Iron Nutrition in Chlamydomonas , 2008, Eukaryotic Cell.

[31]  R. French,et al.  High Sensitivity, Quantitative Measurements of Polyphosphate Using a New DAPI-Based Approach , 2008, Journal of Fluorescence.

[32]  B. Yandell,et al.  Saccharomyces cerevisiae Vacuole in Zinc Storage and Intracellular Zinc Distribution , 2007, Eukaryotic Cell.

[33]  S. Lippard,et al.  Characterization of the particulate methane monooxygenase metal centers in multiple redox states by X-ray absorption spectroscopy. , 2006, Inorganic chemistry.

[34]  D. Eide Zinc transporters and the cellular trafficking of zinc. , 2006, Biochimica et biophysica acta.

[35]  S. Merchant,et al.  Between a rock and a hard place: trace element nutrition in Chlamydomonas. , 2006, Biochimica et biophysica acta.

[36]  R. Birkenbihl,et al.  A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Peter Rohloff,et al.  Acidocalcisomes ? conserved from bacteria to man , 2005, Nature Reviews Microbiology.

[38]  D. Winge,et al.  Specific Copper Transfer from the Cox17 Metallochaperone to Both Sco1 and Cox11 in the Assembly of Yeast Cytochrome c Oxidase* , 2004, Journal of Biological Chemistry.

[39]  R. Palmiter,et al.  Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers , 2004, Pflügers Archiv.

[40]  R. Caprioli,et al.  The encyclopedia of mass spectrometry , 2003 .

[41]  B. Rosen Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. , 2002, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[42]  S. Merchant,et al.  Copper-Dependent Iron Assimilation Pathway in the Model Photosynthetic Eukaryote Chlamydomonas reinhardtii , 2002, Eukaryotic Cell.

[43]  Govindjee,et al.  The Polyphosphate Bodies of Chlamydomonas reinhardtii Possess a Proton-pumping Pyrophosphatase and Are Similar to Acidocalcisomes* , 2001, The Journal of Biological Chemistry.

[44]  S. Izawa,et al.  The Zrc1 is involved in zinc transport system between vacuole and cytosol in Saccharomyces cerevisiae. , 2001, Biochemical and biophysical research communications.

[45]  D. Eide,et al.  Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae , 2000, The EMBO journal.

[46]  T. O’Halloran,et al.  Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. , 1999, Science.

[47]  J. Valentine,et al.  Delivering Copper Inside Yeast and Human Cells , 1997, Science.

[48]  P. Sadler,et al.  1H,13C-NMR and X-ray absorption studies of copper(I) glutathione complexes. , 1996, European journal of biochemistry.

[49]  S. Merchant,et al.  Degradation of Plastocyanin in Copper-deficient Chlamydomonas reinhardtii , 1995, The Journal of Biological Chemistry.

[50]  A. Rea,et al.  Vacuolar H+ -Translocating Pyrophosphatase , 1993 .

[51]  G. Howe,et al.  Dynamic interplay between two copper‐titrating components in the transcriptional regulation of cyt c6. , 1991, The EMBO journal.

[52]  S. Merchant,et al.  Metal ion regulated gene expression: use of a plastocyanin‐less mutant of Chlamydomonas reinhardtii to study the Cu(II)‐dependent expression of cytochrome c‐552. , 1987, The EMBO journal.

[53]  S. Merchant,et al.  Regulation by copper of the expression of plastocyanin and cytochrome c552 in Chlamydomonas reinhardi , 1986, Molecular and cellular biology.