A new approach to inverse spectral theory, I. Fundamental formalism

We present a new approach (distinct from Gelfand-Levitan) to the the- orem of Borg-Marchenko that the m-function (equivalently, spectral measure) for a finite interval or half-line Schrodinger operator determines the poten- tial. Our approach is an analog of the continued fraction approach for the moment problem. We prove there is a representation for the m-function m(−κ 2 ) = −κ − R b

[1]  Barry Simon,et al.  A new approach to inverse spectral theory, II. General real potentials and the connection to the spectral measure , 1998, math/9809182.

[2]  B. M. Levitan,et al.  Inverse Sturm-Liouville Problems , 1987 .

[3]  Barry Simon,et al.  Spectral analysis of rank one perturbations and applications , 1995 .

[4]  M. Väth Operators and applications , 1997 .

[5]  M. Reed,et al.  Methods of Modern Mathematical Physics. 2. Fourier Analysis, Self-adjointness , 1975 .

[6]  B. Simon,et al.  Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum , 1999 .

[7]  R. Bolstein,et al.  Expansions in eigenfunctions of selfadjoint operators , 1968 .

[8]  B. Simon Functional integration and quantum physics , 1979 .

[9]  Barry Simon,et al.  m-Functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices , 1997 .

[10]  W. N. Everitt On a Property of the M -Coefficient of a Secondorder Linear Differential Equation , 1972 .

[11]  I. Gel'fand,et al.  On the determination of a differential equation from its spectral function , 1955 .

[12]  F. Atkinson On the location of the Weyl circles , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[13]  V. Marchenko Sturm-Liouville Operators and Applications , 1986 .

[14]  Barry Simon,et al.  Methods of modern mathematical physics. III. Scattering theory , 1979 .

[15]  B. Levitan,et al.  On the Asymptotic Behavior of the Weyl-Titchmarsh m-FUNCTION , 1991 .

[16]  T. Stieltjes Recherches sur les fractions continues , 1995 .