Structural Vulnerability Assessment of Bridge Piers in the Event of Barge Collision

[1]  Hideo Matsutomi,et al.  Method for Estimating Collision Force of Driftwood Accompanying Tsunami Inundation Flow , 2009 .

[2]  Karl S. Pister,et al.  Assessment of cap model: consistent return algorithms and rate-dependent extension , 1988 .

[3]  Clay Naito,et al.  Full-Scale Experimental Study of Impact Demands Resulting from High Mass, Low Velocity Debris , 2014 .

[4]  Ronald A. Cook,et al.  Barge Impact Testing of the St. George Island Causeway Bridge, Phase III: Physical Testing and Data Interpretation , 2006 .

[5]  Ronald A. Cook,et al.  BARGE IMPACT TESTING OF THE ST. GEORGE ISLAND CAUSEWAY BRIDGE. PHASE II: DESIGN OF INSTRUMENTATION SYSTEMS , 2003 .

[6]  Jack P. Moehle,et al.  "BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318-11) AND COMMENTARY" , 2011 .

[7]  Issam E. Harik,et al.  Equivalent Barge and Flotilla Impact Forces on Bridge Piers , 2010 .

[8]  Ronald A. Cook,et al.  Barge Impact Testing of the St. , 2002 .

[9]  Gary R. Consolazio,et al.  Development of Improved Bridge Design Provisions for Barge Impact Loading , 2008 .

[10]  Kazunori Fujikake,et al.  Impact Response of Reinforced Concrete Beam and Its Analytical Evaluation , 2009 .

[11]  John E. Crawford,et al.  Dynamic Increase Factors for Steel Reinforcing Bars , 1998 .

[12]  Gary R. Consolazio,et al.  Dynamic Amplification of Pier Column Internal Forces Due to Barge–Bridge Collision , 2010 .

[13]  B. Li,et al.  Dynamic behavior of reinforced concrete beams under varying rates of concentrated loading , 2012 .

[14]  Robert B. Haehnel,et al.  Maximum Impact Force of Woody Debris on Floodplain Structures , 2004 .

[15]  Peng Yuan,et al.  One‐Dimensional Model for Multi‐Barge Flotillas Impacting Bridge Piers , 2008, Comput. Aided Civ. Infrastructure Eng..

[16]  Yvonne D Murray,et al.  Users Manual for LS-DYNA Concrete Material Model 159 , 2007 .

[17]  Anil C. Wijeyewickrema,et al.  Response of reinforced concrete columns impacted by tsunami dispersed 20′ and 40′ shipping containers , 2013 .

[18]  Zhi Yang,et al.  Dynamic Demand of Bridge Structure Subjected to Vessel Impact Using Simplified Interaction Model , 2011 .

[19]  Hong Hao,et al.  Laboratory tests and numerical simulations of barge impact on circular reinforced concrete piers , 2013 .

[20]  Roger P Bligh,et al.  Evaluation of LS-DYNA Concrete Material Model 159 , 2007 .

[21]  S H Perry,et al.  Impact Behavior of Plain Concrete Loaded in Uniaxial Compression , 1995 .

[22]  Ronald A. Cook,et al.  BARGE IMPACT TESTING OF THE ST. GEORGE ISLAND CAUSEWAY BRIDGE. PHASE I: FEASIBILITY STUDY , 2002 .

[23]  Robert M. Ebeling,et al.  Barge train maximum impact forces using limit states for the lashings between barges , 2005 .

[24]  Federico Pinto,et al.  Determination of Impact Force History during Multicolumn Barge Flotilla Collisions against Bridge Piers , 2014 .

[25]  Gary R. Consolazio,et al.  Nonlinear analysis of barge crush behavior and its relationship to impact resistant bridge design , 2003 .

[26]  Marcelo H. Kobayashi,et al.  Water-Driven Debris Impact Forces on Structures: Experimental and Theoretical Program , 2013 .

[27]  L. Malvar,et al.  Dynamic Increase Factors for Concrete , 1998 .