On the Statistical Thermodynamics of Reversible Communicating Processes

We propose a probabilistic interpretation of a class of reversible communicating processes. The rate of forward and backward computing steps, instead of being given explicitly, is derived from a set of formal energy parameters. This is similar to the Metropolis-Hastings algorithm. We find a lower bound on energy costs which guarantees that a process converges to a probabilistic equilibrium state (a grand canonical ensemble in statistical physics terms [19]). This implies that such processes hit a success state in finite average time, if there is one.

[1]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[2]  Vincent Danos,et al.  Reversible Communicating Systems , 2004, CONCUR.

[3]  Davide Sangiorgi,et al.  On the Complexity of Termination Inference for Processes , 2007, TGC.

[4]  Vincent Danos,et al.  Equilibrium and termination II: the case of Petri nets , 2013, Mathematical Structures in Computer Science.

[5]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[6]  Ian Stark,et al.  The Continuous pi-Calculus: A Process Algebra for Biochemical Modelling , 2008, CMSB.

[7]  Vincent Danos,et al.  Self-assembling Trees , 2007, Electron. Notes Theor. Comput. Sci..

[8]  Vincent Danos,et al.  Transactions in RCCS , 2005, CONCUR.

[9]  Paul Gastin,et al.  CONCUR 2010 - Concurrency Theory, 21th International Conference, CONCUR 2010, Paris, France, August 31-September 3, 2010. Proceedings , 2010, CONCUR.

[10]  J. Krivine,et al.  Algèbres de Processus Réversibles , 2006 .

[11]  Jean Krivine A verification algorithm for Declarative Concurrent Programming , 2006, ArXiv.

[12]  Persi Diaconis,et al.  The Markov chain Monte Carlo revolution , 2008 .

[13]  Vahid Shahrezaei,et al.  Scalable Rule-Based Modelling of Allosteric Proteins and Biochemical Networks , 2010, PLoS Comput. Biol..

[14]  D. Vere-Jones Markov Chains , 1972, Nature.

[15]  Maxie D. Schmidt,et al.  Generalized j-Factorial Functions, Polynomials, and Applications , 2010 .

[16]  Vedran Dunjko,et al.  Proceedings Sixth Workshop on Developments in Computational Models: Causality, Computation, and Physics, , 2010 .

[17]  Vincent Danos,et al.  Equilibrium and Termination , 2010, DCM.

[18]  K. V. S. Prasad Combinators and bisimulation proofs for restartable systems , 1987 .

[19]  Ivan Lanese,et al.  Reversing Higher-Order Pi , 2010, CONCUR.

[20]  R. F. Streater Stochastic Partial Differential Equations: Statistical dynamics with thermal noise , 1995 .