Multiple-bandgap vertical-junction architectures for ultra-efficient concentrator solar cells

A novel multiple-bandgap multi-terminal vertical-junction (side-illumination) architecture for concentrator solar cells is proposed and simulated, wherein each stacked sub-cell operates at its own maximum power point, without the need for tunnel diodes, current matching, lattice matching, metallization grids or spectrum splitting. Practical implementation is limited to indirect bandgap semiconductors (including Si and Ge), with a dramatic reduction in series resistance such that ultra-efficient operation at irradiance levels of thousands of suns appears tenable – rivalling in principle today's best multi-junction III–V cells.

[1]  A. R. Moore,et al.  Intrinsic Optical Absorption in Germanium-Silicon Alloys , 1958 .

[2]  Sadao Adachi,et al.  Properties of Semiconductor Alloys , 2009 .

[3]  N. Bouarissa,et al.  Band parameters for AlAs, InAs and their ternary mixed crystals , 2008 .

[4]  L. S. Kothari,et al.  Surface recombination and internal currents in a vertical-junction solar cell , 1975 .

[5]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[6]  Michael S. Shur,et al.  Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb , 1996 .

[7]  M. Shur,et al.  Handbook Series on Semiconductor Parameters , 1996 .

[8]  Cohen,et al.  Quasiparticle energies for cubic BN, BP, and BAs. , 1991, Physical review. B, Condensed matter.

[9]  B. Sater,et al.  A first order theory of the p+-n-n+edge-illuminated silicon solar cell at very high injection levels , 1977, IEEE Transactions on Electron Devices.

[10]  R. Opila,et al.  Wide Band Gap Gallium Phosphide Solar Cells , 2012, IEEE Journal of Photovoltaics.

[11]  Martin A. Green,et al.  Solar cell efficiency tables (version 39) , 2012 .

[12]  Gerhard Willeke,et al.  Thin crystalline silicon solar cells , 2002 .

[13]  A. Kribus,et al.  Vertical junction Si cells for concentrating photovoltaics , 2012 .

[14]  Chang,et al.  Unusually low surface-recombination velocity on silicon and germanium surfaces. , 1986, Physical review letters.

[15]  Jccm Boukje Huijben,et al.  26.1% thin-film GaAs solar cell using epitaxial lift-off , 2009 .

[16]  J. Gordon,et al.  Is Auger recombination the ultimate performance limiter in concentrator solar cells , 2010 .

[17]  J. Chapple‐Sokol,et al.  The etched multiple vertical junction silicon photovoltaic cell , 1982 .

[18]  T. Chu,et al.  Crystal Growth and Properties of Boron Monoarsenide , 1972 .

[19]  Vinod Kumar Khanna,et al.  Physical understanding and technological control of carrier lifetimes in semiconductor materials and devices: A critique of conceptual development, state of the art and applications , 2005 .

[20]  P. Hebert,et al.  III–V multijunction solar cells for concentrating photovoltaics , 2009 .

[21]  Z. M. Simon Li,et al.  Two‐dimensional simulation of GaInP/GaAs/Ge triple junction solar cell , 2007 .

[22]  C. Vrancken,et al.  Systematic TLM Measurements of NiSi and PtSi Specific Contact Resistance to n- and p-Type Si in a Broad Doping Range , 2008, IEEE Electron Device Letters.