Computational Statistics and Data Analysis a Generalized Modified Weibull Distribution for Lifetime Modeling
暂无分享,去创建一个
[1] Amit Choudhury,et al. A Simple Derivation of Moments of the Exponentiated Weibull Distribution , 2005 .
[2] R. E. Barlow,et al. Total time on test processes and applications to failure data , 1975 .
[3] A. Silva. Estudo evolutivo das crianças expostas ao HIV e notificadas pelo núcleo de vigilância epidemiológica do HCFMRP-USP , 2004 .
[4] Saralees Nadarajah. On the moments of the modified Weibull distribution , 2005, Reliab. Eng. Syst. Saf..
[5] G. S. Mudholkar,et al. A Generalization of the Weibull Distribution with Application to the Analysis of Survival Data , 1996 .
[6] Samuel Kotz,et al. On some recent modifications of Weibull distribution , 2005, IEEE Transactions on Reliability.
[7] Debasis Kundu,et al. Generalized Rayleigh distribution: different methods of estimations , 2005, Comput. Stat. Data Anal..
[8] D. Kundu,et al. Theory & Methods: Generalized exponential distributions , 1999 .
[9] D. Kundu,et al. EXPONENTIATED EXPONENTIAL FAMILY: AN ALTERNATIVE TO GAMMA AND WEIBULL DISTRIBUTIONS , 2001 .
[10] D. N. Prabhakar Murthy,et al. A modified Weibull distribution , 2003, IEEE Trans. Reliab..
[11] Min Xie,et al. Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function , 1996 .
[12] M. B. Rajarshi,et al. Bathtub distributions: a review , 1988 .
[13] Magne Vollan Aarset,et al. How to Identify a Bathtub Hazard Rate , 1987, IEEE Transactions on Reliability.
[14] Thong Ngee Goh,et al. A modified Weibull extension with bathtub-shaped failure rate function , 2002, Reliab. Eng. Syst. Saf..
[15] U. Hjorth. A Reliability Distribution With Increasing, Decreasing, Constant and Bathtub-Shaped Failure Rates , 1980 .
[16] Ronald E. Glaser,et al. Bathtub and Related Failure Rate Characterizations , 1980 .
[17] Hoang Pham,et al. On Recent Generalizations of the Weibull Distribution , 2007, IEEE Transactions on Reliability.
[18] Hendrik Schäbe,et al. A new model for a lifetime distribution with bathtub shaped failure rate , 1992 .
[19] Deo Kumar Srivastava,et al. The exponentiated Weibull family: a reanalysis of the bus-motor-failure data , 1995 .
[20] Richard E. Barlow,et al. Reliability and Fault Tree Analysis , 1977 .
[21] Gleici da Silva Castro Perdona. Modelos de riscos aplicados à análise de sobrevivência , 2006 .
[22] Jurgen A. Doornik,et al. Ox: an Object-oriented Matrix Programming Language , 1996 .
[23] Chin-Diew Lai,et al. A flexible Weibull extension , 2007, Reliab. Eng. Syst. Saf..