Implicit Hamiltonian Systems with Symmetry
暂无分享,去创建一个
[1] Irene Dorfman,et al. Dirac Structures and Integrability of Nonlinear Evolution Equations , 1993 .
[2] Bernhard Maschke,et al. Modelling and Control of Mechanical Systems , 1997 .
[3] W. Tulczyjew. Geometric formulations of physical theories , 1989 .
[4] A. Schaft,et al. The Hamiltonian formulation of energy conserving physical systems with external ports , 1995 .
[5] J. Koiller. Reduction of some classical non-holonomic systems with symmetry , 1992 .
[6] A. Schaft,et al. An intrinsic Hamiltonian formulation of the dynamics of LC-circuits , 1995 .
[7] Jerrold E. Marsden,et al. The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems , 1997 .
[8] C. Marle. Géométrie des systèmes mécaniques à liaisons actives , 1991 .
[9] van der Arjan Schaft,et al. On the Hamiltonian Formulation of Nonholonomic Mechanical Systems , 1994 .
[10] P. Olver. Applications of Lie Groups to Differential Equations , 1986 .
[11] Anthony M. Bloch,et al. Nonlinear Dynamical Control Systems (H. Nijmeijer and A. J. van der Schaft) , 1991, SIAM Review.
[12] Edmund Taylor Whittaker,et al. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: INDEX OF TERMS EMPLOYED , 1988 .
[13] P. Krishnaprasad,et al. Nonholonomic mechanical systems with symmetry , 1996 .
[14] Bernhard Maschke,et al. Mathematical Modeling of Constrained Hamiltonian Systems , 1995 .
[15] J. Sniatycki,et al. Geometry of nonholonomic constraints , 1995 .
[16] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[17] Krzysztof Stefański. Dynamical systems III. : V. I. Arnold (Ed.):Mathematical Aspects of Classical and Celestial Mechanics. Encyclopedia of Mathematical Sciences (Gamkrelidze R. V. (Eds.)) Vol. 3. Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo 1988. 81 figs., XIV + 29 pp., hardcover, ISBN 3-540-17002-2. , 1992 .
[18] V. Arnold,et al. Dynamical Systems III , 1987 .
[19] A. Schaft,et al. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems , 1999 .
[20] A. Fordy. APPLICATIONS OF LIE GROUPS TO DIFFERENTIAL EQUATIONS (Graduate Texts in Mathematics) , 1987 .
[21] Arjan van der Schaft,et al. Interconnected mechanical systems, part I: geometry of interconnection and implicit Hamiltonian systems , 1997 .
[22] Charles-Michel Marle,et al. Symplectic geometry and analytical mechanics , 1987 .
[23] I. Neĭmark,et al. Dynamics of Nonholonomic Systems , 1972 .
[24] A. Schaft,et al. Interconnection of systems: the network paradigm , 1996, Proceedings of 35th IEEE Conference on Decision and Control.
[25] J. Marsden,et al. Reduction of symplectic manifolds with symmetry , 1974 .
[26] K. Brown,et al. Graduate Texts in Mathematics , 1982 .