Implicit Hamiltonian Systems with Symmetry

Implicit Hamiltonian systems with symmetry are treated by exploiting the notion of symmetry of Dirac structures. It is shown how Dirac structures can be reduced to Dirac structures on the orbit space of the symmetry group, leading to a reduced implicit (generalized) Hamiltonian system. The approach is specialized to nonholonomic mechanical systems with symmetry.

[1]  Irene Dorfman,et al.  Dirac Structures and Integrability of Nonlinear Evolution Equations , 1993 .

[2]  Bernhard Maschke,et al.  Modelling and Control of Mechanical Systems , 1997 .

[3]  W. Tulczyjew Geometric formulations of physical theories , 1989 .

[4]  A. Schaft,et al.  The Hamiltonian formulation of energy conserving physical systems with external ports , 1995 .

[5]  J. Koiller Reduction of some classical non-holonomic systems with symmetry , 1992 .

[6]  A. Schaft,et al.  An intrinsic Hamiltonian formulation of the dynamics of LC-circuits , 1995 .

[7]  Jerrold E. Marsden,et al.  The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems , 1997 .

[8]  C. Marle Géométrie des systèmes mécaniques à liaisons actives , 1991 .

[9]  van der Arjan Schaft,et al.  On the Hamiltonian Formulation of Nonholonomic Mechanical Systems , 1994 .

[10]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[11]  Anthony M. Bloch,et al.  Nonlinear Dynamical Control Systems (H. Nijmeijer and A. J. van der Schaft) , 1991, SIAM Review.

[12]  Edmund Taylor Whittaker,et al.  A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: INDEX OF TERMS EMPLOYED , 1988 .

[13]  P. Krishnaprasad,et al.  Nonholonomic mechanical systems with symmetry , 1996 .

[14]  Bernhard Maschke,et al.  Mathematical Modeling of Constrained Hamiltonian Systems , 1995 .

[15]  J. Sniatycki,et al.  Geometry of nonholonomic constraints , 1995 .

[16]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[17]  Krzysztof Stefański Dynamical systems III. : V. I. Arnold (Ed.):Mathematical Aspects of Classical and Celestial Mechanics. Encyclopedia of Mathematical Sciences (Gamkrelidze R. V. (Eds.)) Vol. 3. Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo 1988. 81 figs., XIV + 29 pp., hardcover, ISBN 3-540-17002-2. , 1992 .

[18]  V. Arnold,et al.  Dynamical Systems III , 1987 .

[19]  A. Schaft,et al.  On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems , 1999 .

[20]  A. Fordy APPLICATIONS OF LIE GROUPS TO DIFFERENTIAL EQUATIONS (Graduate Texts in Mathematics) , 1987 .

[21]  Arjan van der Schaft,et al.  Interconnected mechanical systems, part I: geometry of interconnection and implicit Hamiltonian systems , 1997 .

[22]  Charles-Michel Marle,et al.  Symplectic geometry and analytical mechanics , 1987 .

[23]  I. Neĭmark,et al.  Dynamics of Nonholonomic Systems , 1972 .

[24]  A. Schaft,et al.  Interconnection of systems: the network paradigm , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[25]  J. Marsden,et al.  Reduction of symplectic manifolds with symmetry , 1974 .

[26]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .