Effect of elevation on spatio‐temporal patterns of olive fly (Bactrocera oleae) populations in northern Greece
暂无分享,去创建一个
Yafit Cohen | Nikos T. Papadopoulos | David Nestel | D. Nestel | I. Kounatidis | N. Papadopoulos | Y. Cohen | P. Mavragani-Tsipidou | Ilias Kounatidis | Penelope Mavragani-Tsipidou | K. Tertivanidis | Maria Nomikou | M. Nomikou | K. Tertivanidis
[1] S. Oman,et al. Spatiotemporal Distribution Patterns of Mediterranean Fruit Fly (Diptera: Tephritidae) in the Central Region of Israel , 2005 .
[2] E. T. Kapatos,et al. Mortality factors and life‐budgets for immature stages of the olive fly, Dacus oleae (Gmel.) (Diptera, Tephritidae), in Corfu , 1986 .
[3] Z. Avidov,et al. Plant pests of Israel , 1969 .
[4] B. S. FLETCHER,et al. Changes in the ovaries of olive flies (Dacus oleae (Gmelin)) during the summer, and their relationship to temperature, humidity and fruit availability , 1978 .
[5] P. Kendra,et al. EFFECT OF ELEVATION AND HOST AVAILABILITY ON DISTRIBUTION OF STERILE AND WILD MEDITERRANEAN FRUIT FLIES (DIPTERA: TEPHRITIDAE) , 2005 .
[6] David Nestle,et al. Spatial Autocorrelation Analysis of a Ceratitis capitata (Diptera: Tephritidae) Adult Population in a Mixed Deciduous Fruit Orchard in Northern Greece , 2003 .
[7] D. Nestel,et al. Seasonal and spatial population loads of a tropical insect: the case of the coffee leaf‐miner in Mexico , 1994 .
[8] J. Badmin. Insect pests in tropical forestry , 2003 .
[9] Jean Palutikof,et al. GIS-based construction of baseline climatologies for the Mediterranean using terrain variables , 2000 .
[10] J. C. Allen,et al. Areawide management of the cotton boll weevil: use of a spatio–temporal model in augmentative biological control , 1998 .
[11] T. Tscharntke,et al. Plant-insect interactions in fragmented landscapes. , 2004, Annual review of entomology.
[12] P. David,et al. Climatic niche partitioning following successive invasions by fruit flies in La Réunion. , 2006, The Journal of animal ecology.
[13] Timothy C. Coburn,et al. Geostatistics for Natural Resources Evaluation , 2000, Technometrics.
[14] Andrew M. Liebhold,et al. Mesoscale Weather Data as Input to a Gypsy Moth (Lepidoptera: Lymantriidae) Phenology Model , 1993 .
[15] M. Altieri. Agroecology: The Scientific Basis Of Alternative Agriculture , 1987 .
[16] M. E. Tzanakakis. SEASONAL DEVELOPMENT AND DORMANCY OF INSECTS AND MITES FEEDING ON OLIVE: A REVIEW , 2003 .
[17] N. Papadopoulos,et al. Spatial analysis of Medfly populations in heterogeneous landscapes. , 2004 .
[18] D. Nestel,et al. The Spatial Dimension in the Ecology of Insect Pests and Its Relevance to Pest Management , 2004 .
[19] S. Pickett,et al. Ecology: Individuals, populations and communities , 1987 .
[20] J. C. Allen,et al. Simulating the Dynamics of Bemisia argentifolii (Homoptera: Aleyrodidae) in an Organic Cropping System with a Spatiotemporal Model , 1997 .
[21] B. Danielson,et al. Spatially Explicit Population Models: Current Forms and Future Uses , 1995 .
[22] F. William Ravlin,et al. Landscape framework to predict phenological events for gypsy moth (Lepidoptera: Lymantriidae) management programs , 1995 .