Rama: a machine learning approach for ribosomal protein prediction in plants

[1]  Chunling Bai,et al.  Coexpression analysis identifies nuclear reprogramming barriers of somatic cell nuclear transfer embryos , 2017, Oncotarget.

[2]  Jing Wang,et al.  A new hybrid coding for protein secondary structure prediction based on primary structure similarity. , 2017, Gene.

[3]  K. Chou,et al.  iRNA-PseColl: Identifying the Occurrence Sites of Different RNA Modifications by Incorporating Collective Effects of Nucleotides into PseKNC , 2017, Molecular therapy. Nucleic acids.

[4]  Wei Chen,et al.  MethyRNA: a web server for identification of N6-methyladenosine sites , 2017, Journal of biomolecular structure & dynamics.

[5]  Wei Chen,et al.  iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences , 2016, Oncotarget.

[6]  Varun Jaiswal,et al.  DRPPP: A machine learning based tool for prediction of disease resistance proteins in plants , 2016, Comput. Biol. Medicine.

[7]  Michal Linial,et al.  ASAP: a machine learning framework for local protein properties , 2015, bioRxiv.

[8]  David Ryan Koes,et al.  A D3R prospective evaluation of machine learning for protein-ligand scoring , 2016, Journal of Computer-Aided Molecular Design.

[9]  Wei Chen,et al.  Identifying N6-methyladenosine sites in the Arabidopsis thaliana transcriptome , 2016, Molecular Genetics and Genomics.

[10]  Yi Sun,et al.  The role of ribosomal proteins in the regulation of cell proliferation, tumorigenesis, and genomic integrity , 2016, Science China Life Sciences.

[11]  Kuo-Chen Chou,et al.  pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. , 2016, Journal of theoretical biology.

[12]  K. Chou,et al.  iACP: a sequence-based tool for identifying anticancer peptides , 2016, Oncotarget.

[13]  M. Lindström,et al.  Role of ribosomal protein mutations in tumor development (Review) , 2016, International journal of oncology.

[14]  Yongchun Zuo,et al.  iDPF-PseRAAAC: A Web-Server for Identifying the Defensin Peptide Family and Subfamily Using Pseudo Reduced Amino Acid Alphabet Composition , 2015, PloS one.

[15]  Dmitri A. Nusinow,et al.  Integration of Light and Photoperiodic Signaling in Transcriptional Nuclear Foci. , 2015, Developmental cell.

[16]  E. Schleiff,et al.  Plant-Specific Features of Ribosome Biogenesis. , 2015, Trends in plant science.

[17]  J. Woolford,et al.  Paradigms of ribosome synthesis: Lessons learned from ribosomal proteins , 2015, Translation.

[18]  Huaiyu Mi,et al.  The InterPro protein families database: the classification resource after 15 years , 2014, Nucleic Acids Res..

[19]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[20]  Miron B. Kursa,et al.  Robustness of Random Forest-based gene selection methods , 2013, BMC Bioinformatics.

[21]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[22]  David M. Goodstein,et al.  Phytozome: a comparative platform for green plant genomics , 2011, Nucleic Acids Res..

[23]  K. Chou Some remarks on protein attribute prediction and pseudo amino acid composition , 2010, Journal of Theoretical Biology.

[24]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[25]  Anésia A. Santos,et al.  The ribosomal protein L10/QM-like protein is a component of the NIK-mediated antiviral signaling. , 2008, Virology.

[26]  Hao Lin,et al.  Predicting subcellular localization of mycobacterial proteins by using Chou's pseudo amino acid composition. , 2008, Protein and peptide letters.

[27]  J. Chory,et al.  Downstream nuclear events in brassinosteroid signalling , 2006, Nature.

[28]  Jan A Snyman,et al.  Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms , 2005 .

[29]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .

[30]  J. Hoh,et al.  Reduced amino acid alphabet is sufficient to accurately recognize intrinsically disordered protein , 2004, FEBS letters.

[31]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[32]  K. Chou Prediction of protein cellular attributes using pseudo‐amino acid composition , 2001, Proteins.

[33]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[34]  J. Platt Sequential Minimal Optimization : A Fast Algorithm for Training Support Vector Machines , 1998 .

[35]  Yiming Yang,et al.  A Comparative Study on Feature Selection in Text Categorization , 1997, ICML.

[36]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[37]  A. V. Grimstone Molecular biology of the cell (3rd edn) , 1995 .

[38]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[39]  G. Dreyfuss,et al.  RNA-binding proteins as developmental regulators. , 1989, Genes & development.

[40]  Nurit Haspel,et al.  Machine Learning Approaches for Predicting Protein Complex Similarity , 2017, J. Comput. Biol..

[41]  Guangpeng Li,et al.  PseKRAAC: a flexible web server for generating pseudo K-tuple reduced amino acids composition , 2017, Bioinform..

[42]  Dariusz Plewczynski,et al.  Predicting Post-Translational Modifications from Local Sequence Fragments Using Machine Learning Algorithms: Overview and Best Practices. , 2017, Methods in molecular biology.

[43]  Tina R. Patil,et al.  Performance Analysis of Naive Bayes and J 48 Classification Algorithm for Data Classification , 2013 .

[44]  Thomas J. Watson,et al.  An empirical study of the naive Bayes classifier , 2001 .