Erbium‐doped integrated waveguide amplifiers and lasers

Erbium-doped fiber devices have been extraordinarily successful due to their broad optical gain around 1.5–1.6 μm. Er-doped fiber amplifiers enable efficient, stable amplification of high-speed, wavelength-division-multiplexed signals, thus continue to dominate as part of the backbone of longhaul telecommunications networks. At the same time, Er-doped fiber lasers see many applications in telecommunications as well as in biomedical and sensing environments. Over the last 20 years significant efforts have been made to bring these advantages to the chip level. Device integration decreases the overall size and cost and potentially allows for the combination of many functions on a single tiny chip. Besides technological issues connected to the shorter device lengths and correspondingly higher Er concentrations required for high gain, the choice of appropriate host material as well as many design issues come into play in such devices. In this contribution the important developments in the field of Er-doped integrated waveguide amplifiers and lasers are reviewed and current and future potential applications are explored. The vision of integrating such Er-doped gain devices with other, passive materials platforms, such as silicon photonics, is discussed.

[1]  I. Montrosset,et al.  Advanced Ti:Er:LiNbO/sub 3/ waveguide lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  N. S. Bergano Wavelength Division Multiplexing in Long-Haul Transmission Systems , 1996 .

[3]  W W Morey,et al.  Continuously tunable single-mode erbium fiber laser. , 1992, Optics letters.

[4]  L Pavesi,et al.  Study of an efficient longitudinal multimode pumping scheme for Si-nc sensitized EDWAs. , 2007, Optics express.

[5]  Heinz P. Weber,et al.  Excited-state absorption in Er: BaY2F8 and Cs3Er2Br9 and comparison with Er: LiYF4 , 1996 .

[6]  Markus Pollnau,et al.  Steady-state lasing in a solid polymer , 2010 .

[7]  Anthony J. Kenyon,et al.  Generalized rate-equation analysis of excitation exchange between silicon nanoclusters and erbium ions , 2008 .

[8]  Markus Pollnau,et al.  Amplification in epitaxially grown $Er:(Gd, Lu)_2O_3$ waveguides for active integrated optical devices , 2008 .

[9]  Eric M. Yeatman,et al.  Sol-gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 μm , 1999 .

[10]  Markus Pollnau,et al.  Near-infrared to visible upconversion in Er3+ doped Cs3Lu2Cl9, Cs3Lu2Br9, and Cs3Y2I9 excited at 1.54 µm , 1999 .

[11]  F. Xia,et al.  High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks , 2008 .

[12]  F. Priolo,et al.  Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides , 1995 .

[13]  Stuart D. Jackson,et al.  Energy-transfer processes in Er3+-doped and Er3+,Pr3+-codoped ZBLAN glasses , 2000 .

[14]  Mk Meint Smit,et al.  Al2O3 films for integrated optics , 1986 .

[15]  Pieter G. Kik,et al.  Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers , 2003 .

[16]  S. Faralli,et al.  Evanescent Multimode Longitudinal Pumping Scheme for Si-Nanocluster Sensitized Er$^{3+}$ -Doped Waveguide Amplifiers , 2008, Journal of Lightwave Technology.

[17]  P. Hoffmann,et al.  Er-doped Al2O3 thin films deposited by high-vacuum chemical vapor deposition (HV-CVD) , 2008 .

[18]  Fabrice Gourbilleau,et al.  Assessment of the main material issues for achieving an Er coupled to silicon nanoclusters infrared amplifier , 2009 .

[19]  Louay A. Eldada,et al.  Advances in telecom and datacom optical components , 2001 .

[20]  H P Weber,et al.  Three-transition cascade erbium laser at 1.7, 2.7, and 1.6 microm. , 1997, Optics letters.

[21]  B. Jaskorzynska,et al.  Concentration-dependent upconversion in Er/sup 3+/-doped fiber amplifiers: Experiments and modeling , 1991, IEEE Photonics Technology Letters.

[22]  Joseph Zyss,et al.  Demonstration of net gain at 1550nm in an erbium-doped polymersingle mode rib waveguide , 2006 .

[23]  Nasser N Peyghambarian,et al.  Singlemode Er:Yb waveguide laser array at 1.5 [micro sign]m , 2001 .

[24]  Mk Meint Smit,et al.  Upconversion in Er-implanted Al2O3 waveguides , 1996 .

[25]  Dimitri Geskus,et al.  Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon , 2010 .

[26]  I. Bennion,et al.  Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters , 1996, IEEE Photonics Technology Letters.

[27]  Richard Ian Laming,et al.  Absorption and emission cross section of Er/sup 3+/ doped silica fibers , 1991 .

[28]  Richard R. A. Syms,et al.  Sol-gel silica-on-silicon buried-channel EDWAs , 2003 .

[29]  K. Solehmainen,et al.  Erbium-doped waveguides fabricated with atomic layer deposition method , 2004, IEEE Photonics Technology Letters.

[30]  Kin Seng Chiang,et al.  Multiwavelength erbium-doped fibre laser based on a high-birefringence fibre loop mirror , 2000 .

[31]  Christof Strohhöfer,et al.  Relationship between gain and Yb 3¿ concentration in Er 3¿ -Yb 3¿ doped waveguide amplifiers , 2001 .

[32]  F. Di Pasquale,et al.  Improved gain characteristics in high-concentration Er/sup 3+//Yb/sup 3+/ codoped glass waveguide amplifiers , 1994 .

[33]  R. S. Quimby,et al.  General procedure for the analysis of Er(3+) cross sections. , 1991, Optics letters.

[34]  Wolfgang Sohler,et al.  Er‐diffused Ti:LiNbO3 waveguide laser of 1563 and 1576 nm emission wavelengths , 1992 .

[35]  Hideaki Hayashi,et al.  Gain characteristics of 6 cm-long Er-doped bismuthate waveguide , 2005 .

[36]  Stefano Taccheo,et al.  Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange , 2006 .

[37]  S. Safavi-Naeini,et al.  Yb3+sensitized Er3+-doped waveguide amplifiers: a theoretical approach , 1998 .

[38]  M. Pollnau,et al.  Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon. , 2010, Optics letters.

[39]  Sien Chi,et al.  Gain-Clamped Erbium-Doped Waveguide Amplifier Module with Fiber Bragg Grating Using Optical Feedback , 2005 .

[40]  M. Brenci,et al.  Optical and spectroscopic properties of soda-lime alumino silicate glasses doped with Er3+ and/or Yb3+ , 2006 .

[41]  S. Faralli,et al.  Effect of Si-nc to ${\hbox {Er}}^{3+}$ Coupling Ratio in EDWAs Longitudinally Pumped by Visible Broad-Area Lasers , 2009, Journal of Lightwave Technology.

[42]  Mk Meint Smit,et al.  Net optical gain at 1.53 mu m in Er-doped Al2O3 waveguides on silicon , 1996 .

[43]  O. Svelto,et al.  Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[44]  Franz X Kärtner,et al.  Scaling of passively mode-locked soliton erbium waveguide lasers based on slow saturable absorbers. , 2008, Optics express.

[45]  Dibyendu Dey,et al.  Erbium-Doped Lithium Niobate Waveguide Lasers , 2005, IEICE Trans. Electron..

[46]  Ian Vickridge,et al.  The role of Er3+–Er3+ separation on the luminescence of Er–doped Al2O3 films prepared by pulsed laser deposition , 1999 .

[47]  T. R. Gosnell,et al.  Uniform upconversion in high-concentration Er(3+)-doped soda lime silicate and aluminosilicate glasses. , 1997, Optics letters.

[48]  L. H. Slooff,et al.  Effects of heat treatment and concentration on the luminescence properties of erbium-doped silica sol–gel films , 2001 .

[49]  Alessandro Martucci,et al.  Fabrication of Erbium-Doped Channel Waveguides by a Combination of Ion Exchange and Sol-Gel Techniques , 2000 .

[50]  Stefano Taccheo,et al.  Active waveguide devices by AgNa ion exchange on erbiumytterbium doped phosphate glasses , 2003 .

[51]  B. Dong,et al.  Optical high temperature sensor based on green up-conversion emissions in Er3+ doped Al2O3 , 2007 .

[52]  Kerry J. Vahala,et al.  All fiber, low threshold, widely tunable single-frequency, erbium-doped fiber ring laser with a tandem fiber Fabry-Perot filter , 1991 .

[53]  Carmen N. Afonso,et al.  Optically active Er–Yb doped glass films prepared by pulsed laser deposition , 1998 .

[54]  Namkyoo Park,et al.  Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier , 2002 .

[55]  J. Shmulovich,et al.  Integrated Low-Jitter 400-MHz Femtosecond Waveguide Laser , 2009, IEEE Photonics Technology Letters.

[56]  D W Prather,et al.  Integration of silicon nanocrystals and erbium ring cavities for a silicon pumped Er:SiO2 laser. , 2010, Journal of nanoscience and nanotechnology.

[57]  Ivo Montrosset,et al.  Q-switched Ti:Er:LiNbO3 waveguide laser , 1999 .

[58]  Remco Stoffer,et al.  Integrated Al $_2$ O $_3$ :Er $^{3+}$ Zero-Loss Optical Amplifier and Power Splitter With 40-nm Bandwidth , 2010 .

[59]  Bruce H. T. Chai,et al.  Er3+:YLiF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature , 1993 .

[60]  Sien Chi,et al.  Utilizations of two-stage erbium amplifier and saturable-absorber filter for tunable and stable power-equalized fiber laser. , 2007, Optics express.

[61]  Jung Jin Ju,et al.  Optical Properties of Er-Doped Al2O3–SiO2 Films Prepared by a Modified Sol–Gel Process , 2005 .

[62]  S. Roberts,et al.  The photoluminescence of erbium-doped silicon monoxide , 1996 .

[63]  Nasser N Peyghambarian,et al.  Cooperative upconversion and energy transfer of new high Er 3+ - and Yb 3+ –Er 3+ -doped phosphate glasses , 2000 .

[64]  J. Judkins,et al.  Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter , 1997, IEEE Photonics Technology Letters.

[65]  A. Kar,et al.  Ultrafast laser inscription of a high-gain Er-doped bismuthate glass waveguide amplifier. , 2010, Optics express.

[66]  T. Kitagawa,et al.  Erbium-doped silica-based planar waveguide amplifier pumped by 0.98 mu m laser diodes , 1993 .

[67]  M. Haner,et al.  Systems evaluation of an Er/sup 3+/-doped planar waveguide amplifier , 1993, IEEE Photonics Technology Letters.

[68]  Wolfgang Jantsch,et al.  On the environment of optically active Er in Si-electroluminescence devices , 1998 .

[69]  Alessandro Martucci,et al.  Active optical properties of erbium-doped GeO2-based sol-gel planar waveguides , 1998 .

[70]  Anthony J. Kenyon,et al.  Erbium in silicon , 2005 .

[71]  Ian Vickridge,et al.  Nanostructuring the Er–Yb distribution to improve the photoluminescence response of thin films , 2004 .

[72]  P. A. Atanasov,et al.  Optically active Er3+–Yb3+ codoped Y2O3 films produced by pulsed laser deposition , 2006 .

[73]  K. Vahala,et al.  Ultralow-threshold erbium-implanted toroidal microlaser on silicon , 2004 .

[74]  Nasser N Peyghambarian,et al.  Waveguide distributed Bragg reflector laser arrays in erbium doped glass made by dry Ag film ion exchange , 2002 .

[75]  Stefano Taccheo,et al.  Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses , 2002 .

[76]  Animesh Jha,et al.  Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription , 2007 .

[77]  Anand Gopinath,et al.  Optical amplification at 1534 nm in erbium-doped zirconia waveguides , 2003 .

[78]  Hugo E. Hernandez-Figueroa,et al.  Pump controlled all-optical switching by using high-concentration Er3+ doped nonlinear waveguides , 1994 .

[79]  Francesco Prudenzano,et al.  Design of Er 3þ doped SiO 2 -TiO 2 planar waveguide amplifier , 2003 .

[80]  Joe C. Campbell,et al.  Low-cost photoreceiver integrating an EDWA and waveguide PIN photodiode for 40 Gbit/s applications , 2007 .

[81]  M. Lipson,et al.  Electrically driven silicon resonant light emitting device based on slot-waveguide. , 2005, Optics express.

[82]  W.H. Loh,et al.  Excited state absorption in the Si nanocluster-Er material system , 2006, IEEE Photonics Technology Letters.

[83]  Ke Liu,et al.  Erbium-doped waveguide amplifiers fabricated using focused proton beam writing , 2004 .

[84]  Peter Dekker,et al.  Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating. , 2008, Optics letters.

[85]  R Corsini,et al.  Harmonically mode-locked Ti:Er:LiNbO(3) waveguide laser. , 1995, Optics letters.

[86]  H. J. Shaw,et al.  Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications , 1994 .

[87]  Gesine Grosche,et al.  Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies. , 2004, Optics express.

[88]  Keiichi Yamamoto,et al.  1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+ , 1997 .

[89]  Eric M. Yeatman,et al.  Optical gain in Er-doped SiO2–TiO2 waveguides fabricated by the sol–gel technique , 1999 .

[90]  Jurgen Michel,et al.  Index contrast scaling for optical amplifiers , 2003 .

[91]  C. E. Chryssou,et al.  Er/sup 3+/-doped Al/sub 2/O/sub 3/ thin films by plasma-enhanced chemical vapor deposition (PECVD) exhibiting a 55-nm optical bandwidth , 1998 .

[92]  Pieter G. Kik,et al.  Pumping planar waveguide amplifiers using a coupled waveguide system , 2001 .

[93]  Hsiu-Sheng Hsu,et al.  Ultra-low-threshold Er:Yb sol-gel microlaser on silicon. , 2009, Optics express.

[94]  Markus Pollnau,et al.  Analysis of heat generation and thermal lensing in erbium 3-/spl mu/m lasers , 2003 .

[95]  P. Camy,et al.  Low propagation losses of an Er:Y2O3 planar waveguide grown by alternate-target pulsed laser deposition , 2001 .

[96]  Morio Kobayashi,et al.  Amplification in erbium-doped silica-based planar lightwave circuits , 1992 .

[97]  Ian Vickridge,et al.  Photoluminescence performance of pulsed-laser deposited Al2O3 thin films with large erbium concentrations , 2001 .

[98]  E.Y.B. Pun,et al.  Er/sup 3+/-Yb/sup 3+/ codoped phosphate glass waveguide amplifier using Ag/sup +/-Li/sup +/ ion exchange , 2002, IEEE Photonics Technology Letters.

[99]  Weiping Zhang,et al.  Structure and optical properties of rare earth doped Y2O3 waveguide films derived by sol–gel process , 2004 .

[100]  F. Di Pasquale,et al.  Improved gain performance in Yb/sup 3+/-sensitized Er/sup 3+/-doped alumina (Al/sub 2/O/sub 3/) channel optical waveguide amplifiers , 2001 .

[101]  Wolfgang Sohler,et al.  Continuous-wave erbium-diffused LiNbO/sub 3/ waveguide laser , 1991 .

[102]  E. Ghibaudo,et al.  Realization of a 980-nm/1550-nm Pump-Signal (De)multiplexer Made by Ion-Exchange on Glass Using a Segmented Asymmetric Y-Junction , 2007, IEEE Photonics Technology Letters.

[103]  F. Di Pasquale,et al.  The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er/sup 3+//Yb/sup 3+/ concentrations , 1995, IEEE Photonics Technology Letters.

[104]  Mohammad R. Taghizadeh,et al.  Er-doped oxyfluoride silicate thin films prepared by pulsed laser deposition , 2007 .

[105]  C. Barthou,et al.  Effects of yttrium codoping on fluorescence lifetimes of Er3+ ions in SiO2–Al2O3 sol–gel glasses , 2006 .

[106]  Alfred Forchel,et al.  A Simple Colloidal Route to Planar Micropatterned Er@ZnO Amplifiers , 1999 .

[107]  Changlie Song,et al.  Fabrication of Yb3+:Er3+ co-doped Al2O3 ridge waveguides by the dry etching , 2007 .

[108]  Ting Wang,et al.  Transmission of 32-Tb/s Capacity Over 580 km Using RZ-Shaped PDM-8QAM Modulation Format and Cascaded Multimodulus Blind Equalization Algorithm , 2010, Journal of Lightwave Technology.

[109]  S. Blaize,et al.  Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate , 2003, IEEE Photonics Technology Letters.

[110]  Nathan R Newbury,et al.  Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared. , 2004, Optics letters.

[111]  Wolfgang Sohler,et al.  Modelocked Er:Ti:LiNbO/sub 3/-waveguide laser , 1993 .

[112]  Sylvain Blaize,et al.  Glass integrated optics ultranarrow linewidth distributed feedback laser matrix for dense wavelength division multiplexing applications , 2003 .

[113]  Mark P. Andrews,et al.  Potassium ion-exchanged Er-Yb doped phosphate glass amplifier , 1997 .

[114]  Daming Zhang,et al.  Erbium-ytterbium codoped waveguide amplifier fabricated with solution-processable complex , 2009 .

[115]  D. Klotzkin,et al.  Optical properties of Er in Er-doped Zn/sub 2/Si/sub 0.5/Ge/sub 0.5/O/sub 4/ waveguide amplifiers , 2005, Journal of Lightwave Technology.

[116]  J.H. Shin,et al.  Optical gain at 1.5 /spl mu/m in nanocrystal Si-sensitized Er-doped silica waveguide using top-pumping 470 nm LEDs , 2004, Journal of Lightwave Technology.

[117]  S H Cho,et al.  Er-Al-codoped silicate planar light waveguide-type amplifier fabricated by radio-frequency sputtering. , 2000, Optics letters.

[118]  J.-M.P. Delavaux,et al.  Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment , 1997, IEEE Photonics Technology Letters.

[119]  G. Franzò,et al.  The excitation mechanism of rare-earth ions in silicon nanocrystals , 1999 .

[120]  Chun-Sheng Ma,et al.  Optical gain at 1535nm in LaF3:Er,Yb nanoparticle-doped organic-inorganic hybrid material waveguide , 2007 .

[121]  T. Gregorkiewicz,et al.  Non-radiative sub-microsecond recombination of excited Er3+ ions in SiO2 sensitized with Si nanocrystals , 2007 .

[122]  S. Balslev,et al.  Planar Er- and Yb-doped amplifiers and lasers , 2001 .

[123]  R. J. Mears,et al.  Erbium fibre amplifiers and lasers , 1992 .

[124]  Anthony J. Kenyon,et al.  Recent developments in rare-earth doped materials for optoelectronics , 2002 .

[125]  A. Polman,et al.  Silver as a sensitizer for erbium , 2002 .

[126]  R. Adar,et al.  Er/sup 3+/ glass waveguide amplifier at 1.5 mu m on silicon , 1992 .

[127]  S. Faralli,et al.  Er$^{3+}$–Yb $^{3+}$ Codoped Silica Waveguide Amplifiers Longitudinally Pumped by Broad-Area Lasers , 2007, IEEE Photonics Technology Letters.

[128]  Y. Jaouen,et al.  Eight-wavelength Er-Yb doped amplifier: combiner/splitter planar integrated module , 1999, IEEE Photonics Technology Letters.

[129]  L.J. Guo,et al.  Optical sensors based on active microcavities , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[130]  W Tittel,et al.  Fidelity of an optical memory based on stimulated photon echoes. , 2007, Physical review letters.

[131]  J. Bradley,et al.  Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity. , 2010, Optics letters.

[132]  Lei Xu,et al.  Er3+/Yb3+ co-doped waveguide amplifier and lossless power splitter fabricated by a two-step ion exchange on a commercial phosphate glass , 2006 .

[133]  B. Garrido,et al.  Optical amplification studies in Si nanocrystals-based waveguides prepared by ion-beam synthesis , 2009 .

[134]  S. Namiki,et al.  116-fs soliton source based on an Er-Yb codoped waveguide amplifier , 1998, IEEE Photonics Technology Letters.

[135]  J. Wang,et al.  Erbium-doped ion-exchanged waveguide lasers in BK-7 glass , 1992, IEEE Photonics Technology Letters.

[136]  A. Polman,et al.  Selective modification of the Er3+ 4I11/2 branching ratio by energy transfer to Eu3+ , 2000 .

[137]  Domenico Pacifici,et al.  Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification , 2003 .

[138]  M. Pollnau,et al.  Reliable Low-Cost Fabrication of Low-Loss $\hbox{Al}_{2}\hbox{O} _{3}{:}\hbox{Er}^{3+}$ Waveguides With 5.4-dB Optical Gain , 2009, IEEE Journal of Quantum Electronics.

[139]  T. Kitagawa,et al.  Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler , 1994 .

[140]  N. Suyal,et al.  Optically active erbium-doped waveguides fabricated using a single-sol-gel-deposition technique , 2005, Journal of Lightwave Technology.

[141]  W.G.J.H.M. van Sark,et al.  LUMINESCENCE QUENCHING IN ERBIUM-DOPED HYDROGENATED AMORPHOUS SILICON , 1996 .

[142]  Salvatore Coffa,et al.  Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes , 1997 .

[143]  James N. McMullin,et al.  Optical properties of strip-loaded Er-doped waveguides , 1996 .

[144]  Nasser Peyghambarian,et al.  Multiwavelength waveguide laser array in C-band , 2002 .

[145]  Shinji Yamashita,et al.  Widely tunable erbium-doped fiber ring laser covering both C-band and L-band , 2001 .

[146]  R Osellame,et al.  1.5 mum single longitudinal mode waveguide laser fabricated by femtosecond laser writing. , 2007, Optics express.

[147]  Stuart D. Jackson High-power erbium cascade fibre laser , 2009 .

[148]  William J. Miniscalco,et al.  Excited-state absorption at 980 nm in erbium-doped glass , 1992, Other Conferences.

[149]  J. Schneider Mid-infrared fluoride fiber lasers in multiple cascade operation , 1995, IEEE Photonics Technology Letters.

[150]  Katsumi Iwatsuki,et al.  Wavelength-tunable single-frequency and single-polarisation Er-doped fibre ring-laser with 1.4 kHz linewidth , 1990 .

[151]  Jane P. Chang,et al.  Controlled erbium incorporation and photoluminescence of Er-doped Y2O3 , 2005 .

[152]  Tomoko Ohtsuki,et al.  Cooperative upconversion effects on the performance of Er 3+ -doped phosphate glass waveguide amplifiers , 1997 .

[153]  Kerry J. Vahala,et al.  Fabrication and characterization of erbium-doped toroidal microcavity lasers , 2006 .

[154]  Kuninori Hattori,et al.  GAIN SWITCHING OF AN ERBIUM-DOPED SILICA-BASED PLANAR WAVEGUIDE LASER , 1996 .

[155]  Ke Liu,et al.  K(+)-Na+ ion-exchanged waveguides in Er(3+)-Yb3+ codoped phosphate glasses using field-assisted annealing. , 2004, Applied optics.

[156]  S. F. Li,et al.  A numerical analysis of gain characteristics of Er-doped Al2O3 waveguide amplifiers , 2002 .

[157]  Jörg Hübner,et al.  Planar waveguide laser in Er/Al-doped germanosilicate , 1999 .

[158]  Michel Langlet,et al.  Up-conversion emission in rare earth-doped Y2Ti2O7 sol–gel thin films , 2005 .

[159]  Paul Lambeck,et al.  Characteristics of Er3+:A1203 thin-films deposited by reactive co-sputtering for application in optical amplification , 1999 .

[160]  Anthony J. Kenyon,et al.  OPTICAL-PROPERTIES OF PECVD ERBIUM-DOPED SILICON-RICH SILICA - EVIDENCE FOR ENERGY-TRANSFER BETWEEN SILICON MICROCLUSTERS AND ERBIUM IONS , 1994 .

[161]  J. F. Massicott,et al.  High-gain broad spectral bandwidth erbium-doped fibre amplifier pumped near 1.5 mu m , 1989 .

[162]  Gianluca Galzerano,et al.  Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser , 2006 .

[163]  Stuart D. Jackson,et al.  Erbium 3 /spl mu/m fiber lasers , 2001 .

[164]  I. Baumann,et al.  Integrated optical spectrum analyzer with internal gain , 1995, IEEE Photonics Technology Letters.

[165]  Hao Li,et al.  A semi-weakly confined erbium-doped waveguide amplifier with double-layered buffer/cladding. , 2008, Optics express.

[166]  Ian Vickridge,et al.  Broadband infrared emission from Er–Tm:Al2O3 thin films , 2005 .

[167]  John M. Zavada,et al.  Luminescence properties of erbium in III–V compound semiconductors , 1995 .

[168]  Gunther Roelkens,et al.  Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides. , 2010, Optics express.

[169]  Jacques Perriere,et al.  Structural and optical properties of rare-earth-doped Y2O3 waveguides grown by pulsed-laser deposition , 2002 .

[170]  Virginie Nazabal,et al.  Propagation losses and gain measurements in erbium-doped fluoride glass channel waveguides by use of a double-pass technique. , 2005, Applied optics.

[171]  Uwe Morgner,et al.  Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses. , 2004, Optics letters.

[172]  E. R. Thoen,et al.  Erbium-ytterbium waveguide laser mode-locked with a semiconductor saturable absorber mirror , 2000, IEEE Photonics Technology Letters.

[173]  John Lehrer Zyskind,et al.  80 nm ultra-wideband erbium-doped silica fibre amplifier , 1997 .

[174]  M. Birk,et al.  An eight-wavelength 160-km transparent metro WDM ring network featuring cascaded erbium-doped waveguide amplifiers , 2001, IEEE Photonics Technology Letters.

[175]  David J. Richardson,et al.  320 fs soliton generation with passively mode-locked erbium fibre laser , 1991 .

[176]  Raimund Ricken,et al.  Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide. , 2004, Optics letters.

[177]  M. Bahtat,et al.  Fluorescence of Er3+ ions in TiO2 planar waveguides prepared by a sol-gel process , 1994 .

[178]  W. Sohler,et al.  Theoretical modeling of optical amplification in Er-doped Ti:LiNbO/sub 3/ waveguides , 1994 .

[179]  S. Venkatesh,et al.  A compact high-performance optical waveguide amplifier , 2004, IEEE Photonics Technology Letters.

[180]  Russell D. Dupuis,et al.  Er-doped AlGaAs native oxides: photoluminescence characterization and process optimization , 2002 .

[181]  Hermann A. Haus,et al.  Ultrashort-pulse fiber ring lasers , 1997 .

[182]  Daniele Romanini,et al.  Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared , 2006 .

[183]  R.R.A. Syms,et al.  Folded-spiral EDWAs with continuously varying curvature , 2004, IEEE Photonics Technology Letters.

[184]  H. H. van den Vlekkert,et al.  Integration of femtosecond laser written optical waveguides in a lab-on-chip. , 2009, Lab on a chip.

[185]  Heinz P. Weber,et al.  Explanation of the cw operation of the Er3+ 3-µm crystal laser , 1994 .

[186]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .

[187]  A. Laliotis,et al.  Multilayered Waveguides for Increasing the Gain Bandwidth of Integrated Amplifiers , 2007, Journal of Lightwave Technology.

[188]  C. R. Giles,et al.  Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers , 1991 .

[189]  Xinwei Zhao,et al.  1.54 μm emission dynamics of erbium-doped zinc-oxide thin films , 2000 .

[190]  Dimitri Geskus,et al.  Neodymium-complex-doped photodefined polymer channel waveguide amplifiers. , 2008, Optics letters.

[191]  L.H. Spiekman,et al.  Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications , 2004, Journal of Lightwave Technology.

[192]  Stefano Taccheo,et al.  Measurement of the energy transfer and upconversion constants in Er–Yb-doped phosphate glass , 1999 .

[193]  Shlomo Ruschin,et al.  Tight packaging of erbium-doped waveguide amplifiers. , 2005, Applied optics.

[194]  Jing Ma,et al.  Experimental investigation of radiation effect on erbium-ytterbium co-doped fiber amplifier for space optical communication in low-dose radiation environment. , 2009, Optics express.

[195]  Richard R. A. Syms,et al.  Layout optimization for erbium-doped waveguide amplifiers , 2002 .

[196]  Sien Chi,et al.  Long-distance fiber grating sensor system using a fiber ring laser with EDWA and SOA , 2005 .

[197]  Pieter G. Kik,et al.  Luminescence-center-mediated excitation as the dominant Er sensitization mechanism in Er-doped silicon-rich SiO2 films , 2007 .

[198]  Sien Chi,et al.  Stable and tunable fiber double-ring laser based on an erbium-doped waveguide amplifier , 2005 .

[199]  Pieter G. Kik,et al.  Exciton–erbium interactions in Si nanocrystal-doped SiO2 , 2000 .

[200]  R Osellame,et al.  Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass. , 2008, Optics express.

[201]  Carmen N. Afonso,et al.  Pulsed laser deposition for optical doping of active waveguide films , 1997 .

[202]  Stefano Taccheo,et al.  Efficient Erbium-doped waveguide amplifier insensitive to power fluctuations. , 2006, Optics express.

[203]  A. Kar,et al.  Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription , 2006, IEEE Photonics Technology Letters.

[204]  Jean-Emmanuel Broquin,et al.  4.25dB gain in a hybrid silicate/phosphate glasses optical amplifier made by wafer bonding and ion-exchange techniques , 2004 .

[205]  R.R.A. Syms,et al.  Analysis of folded erbium-doped planar waveguide amplifiers by the method of lines , 1999 .

[206]  Frantisek Uherek,et al.  Highly oriented crystalline Er:YAG and Er:YAP layers prepared by PLD and annealing , 2009 .

[207]  Motoshi Ono,et al.  Fabrication of ultra-compact Er-doped waveguide amplifier based on bismuthate glass , 2008 .

[208]  W Sohler,et al.  Integrated optical Ti:Er:LiNbO3 distributed Bragg reflector laser with a fixed photorefractive grating. , 1998, Optics letters.

[209]  I. M. Jauncey,et al.  Low-noise erbium-doped fibre amplifier operating at 1.54μm , 1987 .

[210]  Albert Polman,et al.  Absorption and emission spectroscopy in Er3+–Yb3+ doped aluminum oxide waveguides , 2003 .

[211]  J.-M.P. Delavaux,et al.  High-performance integrated erbium/sup +3/-ytterbium/sup +3/ codoped glass waveguide laser , 1997, IEEE Photonics Technology Letters.

[212]  Alessandro Chiasera,et al.  Sol–gel-derived Er-activated SiO2–HfO2 planar waveguides for 1.5μm application , 2004 .

[213]  T. Gregorkiewicz,et al.  Energy transfer processes in Er-doped SiO2 sensitized with Si nanocrystals , 2008, 0806.0960.

[214]  Jacques Albert,et al.  Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors , 1994 .

[215]  G. N. van den Hoven,et al.  Erbium in crystal silicon: Optical activation, excitation, and concentration limits , 1995 .

[216]  I. Duling Subpicosecond all-fibre erbium laser , 1991 .

[217]  Sien Chi,et al.  Unitizations of double-ring structure and Erbium-doped waveguide amplifier for stable and tunable fiber laser , 2007 .

[218]  Joseph S. Hayden,et al.  Arrays of distributed-Bragg-reflector waveguide lasers at 1536 nm in Yb/Er codoped phosphate glass , 1999 .

[219]  Ke Liu,et al.  Modeling and experiments of packaged Er3+-Yb3+ co-doped glass waveguide amplifiers , 2007 .

[220]  M. Pollnau,et al.  Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching , 2007 .

[221]  R.R.A. Syms,et al.  Fiber-device-fiber gain from a sol-gel erbium-doped waveguide amplifier , 2002, IEEE Photonics Technology Letters.

[222]  G A Ball,et al.  Low-loss erbium-doped ion-exchanged channel waveguides. , 1991, Optics letters.

[223]  Feng Chen,et al.  Ridge optical waveguide in an Er3+/Yb3+ co-doped phosphate glass produced by He+ ion implantation combined with Ar+ ion beam etching , 2007 .

[224]  Jurgen Michel,et al.  Hybrid waveguides for optically pumped amplifiers , 2009 .

[225]  M. Ibsen,et al.  Erbium-doped waveguide amplifier for reconfigurable WDM metro networks , 2005, IEEE Photonics Technology Letters.

[226]  Tomoko Ohtsuki,et al.  Gain characteristics of a high concentration Er3+-doped phosphate glass waveguide , 1995 .

[227]  Jingsong Gao,et al.  Photoluminescence enhancement in Yb(3+):Er(3+)co-doped eutectic Al(2)O(3): SiO(2) thin films by 980nm excitation. , 2007, Optics express.

[228]  S. Taccheo,et al.  Investigation of Transients in Single-Fiber Bidirectional Closed-Loop WDM Ring Network Using High-Power Gain Clamped EDWA , 2009, Journal of Lightwave Technology.

[229]  W. Miniscalco Erbium-doped glasses for fiber amplifiers at 1500 nm , 1991 .

[230]  D S Funk,et al.  Hybrid glass substrates for waveguide device manufacture. , 2001, Optics letters.

[231]  Günter Huber,et al.  Spectroscopy and green upconversion laser emission of Er3+‐doped crystals at room temperature , 1994 .

[232]  Fabrice Gourbilleau,et al.  Refractive index dependence of the absorption and emission cross sections at 1.54μm of Er3+ coupled to Si nanoclusters , 2006 .

[233]  J.-M.P. Delavaux,et al.  Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters , 1997, IEEE Photonics Technology Letters.

[234]  Sebania Libertino,et al.  The erbium‐impurity interaction and its effects on the 1.54 μm luminescence of Er3+ in crystalline silicon , 1995 .

[235]  A.M.J. Koonen,et al.  Ion-exchanged planar lossless splitter at 1.5 um , 1996 .

[236]  Bruce H. T. Chai,et al.  Room‐temperature green laser emission of Er:LiYF4 , 1993 .

[237]  M. Nikl,et al.  Realization and infrared to green upconversion luminescence in Er3+:YAlO3 ion-implanted optical waveguides , 2006 .

[238]  J Schmulovich Er-doped glass waveguide amplifiers on silicon , 1997, Photonics West.

[239]  S. Iraj Najafi,et al.  Ion-exchanged Er/Yb phosphate glass waveguide amplifiers and lasers , 1998 .

[240]  Markus Pollnau,et al.  Temporal dynamics of upconversion luminescence in Er3+, Yb3+ co-doped crystalline KY(WO4)2 thin films , 2008 .

[241]  Oliver Blume,et al.  Aluminum Oxide Doped with Erbium, Titanium and Chromium for Active Integrated Optical Applications , 2001 .

[242]  A. Polman,et al.  Erbium implanted thin film photonic materials , 1997 .

[243]  J.-M.P. Delavaux,et al.  Hybrid Q-switched laser with Ti-indiffused LiNbO 3 and Er-Yb co-doped glass waveguides , 1997 .

[244]  Wolfgang Sohler,et al.  Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity , 2001 .

[245]  D. Mccumber,et al.  Theory of Phonon-Terminated Optical Masers , 1964 .

[246]  M. Ibsen,et al.  A 43-W C-band tunable narrow-linewidth erbium-ytterbium codoped large-core fiber laser , 2004, IEEE Photonics Technology Letters.

[247]  I. Baumann,et al.  Acoustically tunable wavelength filter with gain , 1994, IEEE Photonics Technology Letters.

[248]  S. Musa,et al.  Characteristics of Er-doped Al/sub 2/O/sub 3/ thin films deposited by reactive co-sputtering , 2000, IEEE Journal of Quantum Electronics.

[249]  U. Peschel,et al.  Simple and accurate procedure for modeling erbium-doped waveguide amplifiers with high concentration , 2000, Journal of Lightwave Technology.

[250]  Albert Polman,et al.  Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm , 1997 .

[251]  Jean-Claude Simon,et al.  170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon. , 2009, Optics express.

[252]  K Ennser,et al.  Single-mode and high power waveguide lasers fabricated by ion-exchange. , 2008, Optics express.

[253]  P. Pellegrino,et al.  Absorption cross section and signal enhancement in Er-doped Si nanocluster rib-loaded waveguides , 2005 .

[254]  Palle Geltzer Dinesen,et al.  Modeling of Yb/sup 3+/-sensitized Er/sup 3+/-doped silica waveguide amplifiers , 1995 .

[255]  R. Osellame,et al.  Er : Yb-Doped Oxyfluoride Silicate Glass Waveguide Laser Fabricated Using Ultrafast Laser Inscription , 2008, IEEE Photonics Technology Letters.

[256]  Rui M. Almeida,et al.  Er3+-doped Multicomponent Silicate Glass Planar Waveguides Prepared by Sol-Gel Processing , 1999 .

[257]  Wolfgang Sohler,et al.  Integrated optical Ti:Er:LiNbO/sub 3/ soliton source , 1997 .

[258]  I. Baumann,et al.  Erbium-doped single- and double-pass Ti:LiNbO/sub 3/ waveguide amplifiers , 1994 .

[259]  J. Shmulovich,et al.  8-mV threshold Er/sup 3+/-doped planar waveguide amplifier , 1996, IEEE Photonics Technology Letters.

[260]  Paul Lambeck,et al.  Sputter-deposited erbium-doped Y2O3 active optical waveguides , 1993 .

[261]  Carmen N. Afonso,et al.  In situ growth of optically active erbium doped Al2O3 thin films by pulsed laser deposition , 1996 .

[262]  Rui Li,et al.  Visible and 1.54 $\mu$m Emission From Amorphous Silicon Nitride Films by Reactive Cosputtering , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[263]  Mario Martinelli,et al.  Erbium-doped crystalline YAG planar and ridge waveguides on quartz and sapphire substrates: deposition and material characterisation , 2001 .

[264]  J. S. Hayden,et al.  Ion-exchanged waveguide lasers in Er3+/Yb3+ codoped silicate glass. , 1999, Applied optics.

[265]  N. Peyghambarian,et al.  Twisted-mode single-frequency Er–Yb waveguide laser at 1.5 μm , 2003 .

[266]  Joseph S. Hayden,et al.  Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass , 2000 .

[267]  Morio Kobayashi,et al.  Guided-wave laser based on erbium-doped silica planar lightwave circuit , 1991 .

[268]  Animesh Jha,et al.  The influence of F−-ion doping on the fluorescence (4I13/2 → 4I15/2) line shape broadening in Er3+-doped oxyfluoride silicate glasses , 2004 .

[269]  T. Kitagawa,et al.  Erbium-doped phosphosilicate glass waveguide amplifier fabricated by PECVD , 1993 .

[270]  Kerry J. Vahala,et al.  Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process , 2005 .

[271]  M. Pollnau,et al.  Diode-pumped 1.7-W erbium 3-/spl mu/m fiber laser , 1999, Technical Digest. CLEO/Pacific Rim '99. Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.99TH8464).

[272]  Markus Pollnau,et al.  Continuous-wave Nd-doped polymer lasers. , 2010, Optics letters.

[273]  Johannes W. Hofstraat,et al.  Optical properties of erbium-doped organic polydentate cage complexes , 1998 .