Planar p-center problems are solvable in polynomial time when clustering a Pareto Front

This paper is motivated by real-life applications of bi-objective optimization. Having many non dominated solutions, one wishes to cluster the Pareto front using Euclidian distances. The p-center problems, both in the discrete and continuous versions, are proven solvable in polynomial time with a common dynamic programming algorithm. Having $N$ points to partition in $K\geqslant 3$ clusters, the complexity is proven in $O(KN\log N)$ (resp $O(KN\log^2 N)$) time and $O(KN)$ memory space for the continuous (resp discrete) $K$-center problem. $2$-center problems have complexities in $O(N\log N)$. To speed-up the algorithm, parallelization issues are discussed. A posteriori, these results allow an application inside multi-objective heuristics to archive partial Pareto Fronts.

[1]  El-Ghazali Talbi,et al.  Clustering in a 2-dimensional Pareto Front: the p-median and p-center problems are polynomially solvable , 2018, ArXiv.

[2]  Nimrod Megiddo,et al.  Linear-Time Algorithms for Linear Programming in R^3 and Related Problems , 1982, FOCS.

[3]  Nicolas Dupin,et al.  MBSE, PLM, MIP and Robust Optimization for System of Systems Management, Application to SCCOA French Air Defense Program , 2016, CSDM.

[4]  Fred W. Glover,et al.  Clustering-driven evolutionary algorithms: an application of path relinking to the quadratic unconstrained binary optimization problem , 2019, J. Heuristics.

[5]  Saïd Salhi,et al.  Speeding up the optimal method of Drezner for the p-centre problem in the plane , 2017, Eur. J. Oper. Res..

[6]  David Eppstein,et al.  Faster construction of planar two-centers , 1997, SODA '97.

[7]  Jean-Paul Rasson,et al.  The gap test: an optimal method for determining the number of natural classes in cluster analysis , 1994 .

[8]  Martine Labbé,et al.  A New Formulation and Resolution Method for the p-Center Problem , 2004, INFORMS J. Comput..

[9]  Martine Labbé,et al.  p-Center Problems , 2015 .

[10]  Micha Sharir A Near-Linear Algorithm for the Planar 2-Center Problem , 1997, Discret. Comput. Geom..

[11]  Haizhou Wang,et al.  Ckmeans.1d.dp: Optimal k-means Clustering in One Dimension by Dynamic Programming , 2011, R J..

[12]  Serpil Sayin,et al.  Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming , 2000, Math. Program..

[13]  Saïd Salhi,et al.  The continuous p-centre problem: An investigation into variable neighbourhood search with memory , 2015, Eur. J. Oper. Res..

[14]  Enrico Zio,et al.  A clustering procedure for reducing the number of representative solutions in the Pareto Front of multiobjective optimization problems , 2011, Eur. J. Oper. Res..

[15]  Nimrod Megiddo,et al.  New Results on the Complexity of p-Center Problems , 1983, SIAM J. Comput..

[16]  Nicolas Dupin,et al.  Modélisation et résolution de grands problèmes stochastiques combinatoires : application à la gestion de production d'électricité , 2015 .

[17]  Micha Sharir,et al.  The Discrete 2-Center Problem , 1997, SCG '97.

[18]  Meena Mahajan,et al.  The Planar k-means Problem is NP-hard I , 2009 .

[19]  Hatice Calik,et al.  Double bound method for solving the p-center location problem , 2013, Comput. Oper. Res..

[20]  Pierre Hansen,et al.  Solving the p‐Center problem with Tabu Search and Variable Neighborhood Search , 2000, Networks.

[21]  Sandip Das,et al.  Some variations on constrained minimum enclosing circle problem , 2013, J. Comb. Optim..

[22]  Zvi Drezner,et al.  The p-Centre Problem—Heuristic and Optimal Algorithms , 1984 .

[23]  Carlos M. Fonseca,et al.  Hypervolume Subset Selection in Two Dimensions: Formulations and Algorithms , 2016, Evolutionary Computation.

[24]  Allan Grønlund Jørgensen,et al.  Fast Exact k-Means, k-Medians and Bregman Divergence Clustering in 1D , 2017, ArXiv.

[25]  Mark S. Daskin,et al.  Network and Discrete Location: Models, Algorithms and Applications , 1995 .

[26]  Sanaz Mostaghim,et al.  A knee point based evolutionary multi-objective optimization for mission planning problems , 2017, GECCO.

[27]  Guohui Lin,et al.  K-Center and K-Median Problems in Graded Distances , 1998, Theor. Comput. Sci..

[28]  Michael T. M. Emmerich,et al.  Maximum Volume Subset Selection for Anchored Boxes , 2018, SoCG.

[29]  Chan-Su Shin,et al.  Computing k-Centers On a Line , 2009, ArXiv.

[30]  David B. Shmoys,et al.  A Best Possible Heuristic for the k-Center Problem , 1985, Math. Oper. Res..

[31]  Nimrod Megiddo,et al.  On the Complexity of Some Common Geometric Location Problems , 1984, SIAM J. Comput..

[32]  Ulf Assarsson,et al.  Fast parallel GPU-sorting using a hybrid algorithm , 2008, J. Parallel Distributed Comput..

[33]  Frank Nielsen,et al.  Clustering in a 2d Pareto Front: p-median and p-center are solvable in polynomial time , 2018, 1806.02098.

[34]  Daniele Ferone,et al.  A New Local Search for the p-Center Problem Based on the Critical Vertex Concept , 2017, LION.

[35]  Z. Drezner On the rectangular p‐center problem , 1987 .

[36]  Pankaj K. Agarwal,et al.  Exact and Approximation Algortihms for Clustering , 1997 .

[37]  Xavier Gandibleux,et al.  Multiobjective Combinatorial Optimization — Theory, Methodology, and Applications , 2003 .

[38]  N. Megiddo Linear-time algorithms for linear programming in R3 and related problems , 1982, FOCS 1982.

[39]  Frank Nielsen,et al.  K-Medoids Clustering Is Solvable in Polynomial Time for a 2d Pareto Front , 2019, WCGO.

[40]  George L. Nemhauser,et al.  Easy and hard bottleneck location problems , 1979, Discret. Appl. Math..

[41]  Carlos A. Coello Coello,et al.  Using Clustering Techniques to Improve the Performance of a Multi-objective Particle Swarm Optimizer , 2004, GECCO.

[42]  Dorit S. Hochbaum,et al.  When are NP-hard location problems easy? , 1984, Ann. Oper. Res..

[43]  Karl Bringmann,et al.  Two-dimensional subset selection for hypervolume and epsilon-indicator , 2014, GECCO.

[44]  Teofilo F. GONZALEZ,et al.  Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..

[45]  Anne Auger,et al.  Investigating and exploiting the bias of the weighted hypervolume to articulate user preferences , 2009, GECCO.

[46]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[47]  Richard C. T. Lee,et al.  The slab dividing approach to solve the EuclideanP-Center problem , 2005, Algorithmica.