Genetic algorithm based support vector machine regression in predicting wave transmission of horizontally interlaced multi-layer moored floating pipe breakwater

[1]  M. Hom-ma,et al.  An Experimental Study on Floating Breakwaters , 1964 .

[2]  N. B. Webber,et al.  A FLOATING BREAKWATER , 1968 .

[3]  J. Marsalek,et al.  FLEXIBLE POROUS FLOATING BREAKWATERS , 1968 .

[4]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[5]  Volker W. Harms DESIGN CRITERIA FOR FLOATING TIRE BREAKWATERS , 1979 .

[6]  Craig T. Bishop Floating Tire Breakwater Design Comparison , 1982 .

[7]  Bruce L. McCartney Floating Breakwater Design , 1985 .

[8]  P. A. Leach,et al.  Hinged Floating Breakwater , 1985 .

[9]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  J. Mani Design of Y‐Frame Floating Breakwater , 1991 .

[11]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[12]  Alexander J. Smola,et al.  Regression estimation with support vector learning machines , 1996 .

[13]  K. Murali,et al.  Performance of Cage Floating Breakwater , 1997 .

[14]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[15]  Vallam Sundar,et al.  Mooring forces and motion responses of pontoon-type floating breakwaters , 1998 .

[16]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[17]  M. C. Deo,et al.  Neural networks for wave forecasting , 2001 .

[18]  Vallam Sundar,et al.  Hydrodynamic characteristics of moored floating pipe breakwaters in random waves , 2003 .

[19]  Makarand Deo,et al.  Wave tranquility studies using neural networks , 2003 .

[20]  Makarand Deo,et al.  Prediction of breaking waves with neural networks , 2003 .

[21]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[22]  Dong-Sheng Jeng,et al.  Neural network model for the prediction of wave-induced liquefaction potential , 2004 .

[23]  Yunqian Ma,et al.  Practical selection of SVM parameters and noise estimation for SVM regression , 2004, Neural Networks.

[24]  H. K. Cigizoglu,et al.  Artificial intelligence methods in breakwater damage ratio estimation , 2005 .

[25]  Seyed Jamshid Mousavi,et al.  APPLICATION OF FUZZY INFERENCE SYSTEM IN THE PREDICTION OF WAVE PARAMETERS , 2005 .

[26]  Kurt Hornik,et al.  Support Vector Machines in R , 2006 .

[27]  Hsien-Kuo Chang,et al.  A fuzzy-neural hybrid system of simulating typhoon waves , 2006 .

[28]  Li-Ching Lin,et al.  Multi-point tidal prediction using artificial neural network with tide-generating forces , 2006 .

[29]  S. Mandal,et al.  STABILITY ANALYSIS OF RUBBLE MOUND BREAKWATER USING ANN , 2007 .

[30]  D. Jeng,et al.  Estimation of pile group scour using adaptive neuro-fuzzy approach , 2007 .

[31]  Mehmet Özger,et al.  Prediction of wave parameters by using fuzzy logic approach , 2007 .

[32]  C. Jan,et al.  Application of artificial neural networks in typhoon surge forecasting , 2007 .

[33]  Dawei Han,et al.  Flood forecasting using support vector machines , 2007 .

[34]  A. Hegde,et al.  Performance Characteristics of Horizontal Interlaced Multilayer Moored Floating Pipe Breakwater , 2007 .

[35]  T.-L. Lee,et al.  Support vector regression methodology for storm surge predictions , 2008 .

[36]  Tshilidzi Marwala,et al.  Water Demand Prediction using Artificial Neural Networks and Support Vector Regression , 2008, J. Comput..

[37]  R. Bakhtyar,et al.  Longshore sediment transport estimation using a fuzzy inference system , 2008 .

[38]  M. C. Deo,et al.  Real-time wave forecasting using genetic programming , 2008 .

[39]  K. Günaydın The estimation of monthly mean significant wave heights by using artificial neural network and regression methods , 2008 .

[40]  Mohammad Javad Yazdanpanah,et al.  Wave hindcasting by coupling numerical model and artificial neural networks , 2008 .

[41]  Roham Bakhtyar,et al.  Application of neuro-fuzzy approach in prediction of runup in swash zone , 2008 .

[42]  Arkal Vittal Hegde,et al.  Wave transmission prediction of multilayer floating breakwater using neural network , 2009 .

[43]  J. Mahjoobi,et al.  Prediction of significant wave height using regressive support vector machines , 2009 .

[44]  Y. Radhika,et al.  Atmospheric Temperature Prediction using Support Vector Machines , 2009 .

[45]  Ching-Piao Tsai,et al.  A combined thermographic analysis—Neural network methodology for eroded caves in a seawall , 2009 .

[46]  A. Etemad-Shahidi,et al.  COMPARISON BETWEEN M5 MODEL TREE AND NEURAL NETWORKS FOR PREDICTION OF SIGNIFICANT WAVE HEIGHT IN LAKE SUPERIOR , 2009 .

[47]  Tarkan Erdik,et al.  Fuzzy logic approach to conventional rubble mound structures design , 2009, Expert Syst. Appl..

[48]  V. Tsihrintzis,et al.  A fuzzy inference system for wind-wave modeling , 2009 .

[49]  H. Md. Azamathulla,et al.  Linear genetic programming for prediction of circular pile scour , 2009 .

[50]  R. Brereton,et al.  Support vector machines for classification and regression. , 2010, The Analyst.

[51]  Srinivasan Alavandar,et al.  Neuro-fuzzy based approach for wave transmission prediction of horizontally interlaced multilayer moored floating pipe breakwater , 2011 .