Alternation Hierarchies of First Order Logic with Regular Predicates

We investigate the decidability of the definability problem for fragments of first order logic over finite words enriched with regular numerical predicates. In this paper, we focus on the quantifier alternation hierarchies of first order logic. We obtain that deciding this problem for each level of the alternation hierarchy of both first order logic and its two-variable fragment when equipped with all regular numerical predicates is not harder than deciding it for the corresponding level equipped with only the linear order.

[1]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[2]  Manfred Kufleitner,et al.  The FO^2 alternation hierarchy is decidable , 2012, CSL.

[3]  Howard Straubing,et al.  Regular Languages in NC¹ , 1992, J. Comput. Syst. Sci..

[4]  Robert Knast,et al.  A Semigroup Characterization of Dot-Depth one Languages , 1983, RAIRO Theor. Informatics Appl..

[5]  Manfred Kufleitner,et al.  Quantifier Alternation in Two-Variable First-Order Logic with Successor Is Decidable , 2012, STACS.

[6]  Howard Straubing,et al.  FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .

[7]  BarringtonDavid A. Mix,et al.  Regular languages in NC1 , 1992 .

[8]  Pierre Péladeau Logically Defined Subsets of N k , 1992, Theor. Comput. Sci..

[9]  Thomas Place,et al.  Going Higher in the First-Order Quantifier Alternation Hierarchy on Words , 2014, ICALP.

[10]  Bret Tilson,et al.  Categories as algebra: An essential ingredient in the theory of monoids , 1987 .

[11]  Janusz A. Brzozowski,et al.  Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).

[12]  Paul Gastin,et al.  A Survey on Small Fragments of First-Order Logic over Finite Words , 2008, Int. J. Found. Comput. Sci..

[13]  Howard Straubing,et al.  A Generalization of the Schützenberger Product of Finite Monoids , 1981, Theor. Comput. Sci..

[14]  Howard Straubing,et al.  First Order Formulas with Modular Ppredicates , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[15]  Howard Straubing Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.

[16]  Jean-Éric Pin,et al.  Syntactic Semigroups , 1997, Handbook of Formal Languages.

[17]  Zoltán Ésik,et al.  Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of Finite Automata , 2001, Acta Cybern..

[18]  Imre Simon,et al.  Piecewise testable events , 1975, Automata Theory and Formal Languages.

[19]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[20]  Howard Straubing,et al.  An Effective Characterization of the Alternation Hierarchy in Two-Variable Logic , 2012, FSTTCS.

[21]  Jorge Almeida A Syntactical Proof of Locality of da , 1996, Int. J. Algebra Comput..

[22]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[23]  Denis Thérien,et al.  Classification of Finite Monoids: The Language Approach , 1981, Theor. Comput. Sci..

[24]  A. Nerode,et al.  Linear automaton transformations , 1958 .

[25]  Charles Paperman,et al.  Two-variable first order logic with modular predicates over words , 2013, STACS.

[26]  Neil Immerman,et al.  Structure Theorem and Strict Alternation Hierarchy for FO2 on Words , 2006, Circuits, Logic, and Games.

[27]  Thomas Wilke,et al.  Over words, two variables are as powerful as one quantifier alternation , 1998, STOC '98.

[28]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[29]  Dominique Perrin,et al.  First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..