Ancient Impact and Aqueous Processes at Endeavour Crater, Mars

Martian Veins After more than 7 years of traveling across the Meridiani Planum region of Mars, the Mars Exploration rover Opportunity reached the Endeavour Crater, a 22-km-impact crater made of materials older than those previously investigated by the rover. Squyres et al. (p. 570) present a comprehensive analysis of the rim of this crater. Localized zinc enrichments that provide evidence for hydrothermal alteration and gypsum-rich veins that were precipitated from liquid water at a relatively low temperature provide a compelling case for aqueous alteration processes in this area at ancient times. Analysis of data from the Mars Exploration Rover Opportunity provides evidence for past water flow near an ancient crater. The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.

[1]  Jean-Pierre Bibring,et al.  Subsurface water and clay mineral formation during the early history of Mars , 2011, Nature.

[2]  M. Jébrak,et al.  Lateral transport of suevite inferred from 3D shape-fabric analysis: Evidence from the Ries impact crater, Germany , 2011 .

[3]  William H. Farrand,et al.  Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater , 2011 .

[4]  A. Treiman,et al.  Primitive olivine‐phyric shergottite NWA 5789: Petrography, mineral chemistry, and cooling history imply a magma similar to Yamato‐980459 , 2010 .

[5]  Jeffrey R. Johnson,et al.  Silica-rich deposits and hydrated minerals at Gusev Crater, Mars: Vis-NIR spectral characterization and regional mapping , 2010 .

[6]  A. McEwen,et al.  Phyllosilicates and sulfates at Endeavour Crater, Meridiani Planum, Mars , 2009 .

[7]  A. B. Sarbadhikari,et al.  Petrogenesis of olivine-phyric shergottite Larkman Nunatak 06319: Implications for enriched components in martian basalts , 2009 .

[8]  William H. Farrand,et al.  Light-toned salty soils and coexisting Si-rich species discovered by the Mars Exploration Rover Spirit in Columbia Hills , 2008 .

[9]  S. L. Philipp Geometry and formation of gypsum veins in mudstones at Watchet, Somerset, SW England , 2008, Geological Magazine.

[10]  L. Qi,et al.  Bulk chemical composition of lherzolitic shergottite Grove Mountains 99027—Constraints on the mantle of Mars , 2008 .

[11]  Helen Ashton,et al.  Metamorphic Rocks: A Classification and Glossary of Terms , 2008 .

[12]  William H. Farrand,et al.  Hydrothermal origin of halogens at Home Plate, Gusev Crater , 2008 .

[13]  A. Knoll,et al.  Water Activity and the Challenge for Life on Early Mars , 2008, Science.

[14]  S. J. Sutley,et al.  USGS Digital Spectral Library splib06a , 2007 .

[15]  D. J. Fettes,et al.  Metamorphic rocks : a classification and glossary of terms , 2007 .

[16]  William H. Farrand,et al.  Overview of the Opportunity Mars Exploration Rover mission to Meridiani Planum: Eagle crater to Purgatory ripple , 2006 .

[17]  William H. Farrand,et al.  Rocks of the Columbia Hills , 2006 .

[18]  B. Marty,et al.  Petrology, geochemistry, and cosmic‐ray exposure age of Iherzolitic shergottite Northwest Africa 1950 , 2005 .

[19]  P. Bons,et al.  The formation of antitaxial calcite veins with well-developed fibres, Oppaminda Creek, South Australia , 2005 .

[20]  K Davis,et al.  Localization and Physical Property Experiments Conducted by Opportunity at Meridiani Planum , 2004, Science.

[21]  J. Fritz,et al.  Petrology and shock metamorphism of the olivine-phyric shergottite Yamato 980459: Evidence for a two-stage cooling and a single-stage ejection history , 2004 .

[22]  Raul A. Romero,et al.  Athena Mars rover science investigation , 2003 .

[23]  W. Boynton,et al.  Composition of the first bulk melt sample from a volcanic region of Mars: Queen Alexandra Range 94201 , 2003 .

[24]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[25]  H. Graber,et al.  On the wave age dependence of wind stress over pure wind seas , 2003 .

[26]  William M. Drennan,et al.  Constraining the inertial dissipation method using the vertical velocity variance , 2003 .

[27]  W. Voigt,et al.  Crystallization and Phase Stability of CaSO4 and CaSO4 – Based Salts , 2003 .

[28]  V. Sautter,et al.  Petrology and chemistry of the Picritic Shergottite North West Africa 1068 (NWA 1068) , 2002 .

[29]  V. Sautter,et al.  The basaltic shergottite Northwest Africa 856: Petrology and chemistry , 2002 .

[30]  H. Y. McSween,et al.  Martian meteorite Dhofar 019: A new shergottite , 2002 .

[31]  S. Squyres,et al.  Hydrothermal systems associated with martian impact craters , 2002 .

[32]  V. Sautter,et al.  Petrology and chemistry of the basaltic shergottite North West Africa 480 , 2002 .

[33]  J. Blichert‐Toft,et al.  Bulk chemistry of Saharan shergottite Dar al Gani 476 , 2001 .

[34]  R. Clayton,et al.  Los Angeles: The Most Differentiated Basaltic Martian Meteorite , 2000 .

[35]  Ian A. Franchi,et al.  A new martian meteorite from the Sahara: The shergottite Dar al Gani 489 , 2000 .

[36]  Jutta Zipfel,et al.  Petrology and chemistry of the new shergottite Dar al Gani 476 , 2000 .

[37]  H. Palme,et al.  Siderophile elements in Martian meteorites and implications for core formation in Mars , 1999 .

[38]  D. Lindstrom,et al.  An impact‐melt origin for lithology A of martian meteorite Elephant Moraine A79001 , 1999 .

[39]  J. Ashby References and Notes , 1999 .

[40]  G. Lugmair,et al.  Early solar system timescales according to 53Mn-53Cr systematics , 1998 .

[41]  U. Krähenbühl,et al.  Noble gases and chemical composition of Shergotty mineral fractions, Chassigny, and Yamato 793605: The trapped argon‐40/argon‐36 ratio and ejection times of Martian meteorites , 1998 .

[42]  J. Warren,et al.  Origin of fibrous gypsum in the Newark rift basin, eastern North America , 1998 .

[43]  W. Boynton,et al.  Petrography and bulk chemistry of Martian lherzolite LEW88516 , 1997 .

[44]  W. Engelhardt Suevite breccia of the Ries impact crater, Germany: Petrography, chemistry and shock metamorphism of crystalline rock clasts , 1997 .

[45]  R. Feely,et al.  Phosphate removal by oceanic hydrothermal processes: An update of the phosphorus budget in the oceans , 1996 .

[46]  G. Kallemeyn,et al.  Siderophile trace elements in ALH84001, other SNC meteorites and eucrites: Evidence of heterogeneity, possibly time-linked, in the mantle of Mars , 1996 .

[47]  W. Engelhardt,et al.  Suevite breccia from the Ries crater, Germany: Origin, cooling history and devitrification of impact glasses , 1995 .

[48]  M. Lindstrom,et al.  Comparison of the LEW88516 and ALHA77005 martian meteorites: Similar but distinct , 1994 .

[49]  G. J. Taylor,et al.  Zagami - Product of a two-stage magmatic history. [of shergottite meteorite] , 1991 .

[50]  E. Jarosewich,et al.  Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .

[51]  R. W. Le Maitre,et al.  A Classification of igneous rocks and glossary of terms : recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks , 1989 .

[52]  K. Keil,et al.  Fluidization and hydrothermal alteration of the suevite deposit at the Ries Crater, West Germany, and implications for Mars , 1986 .

[53]  H. Wänke,et al.  Chemical systematics of the shergotty meteorite and the composition of its parent body (Mars) , 1986 .

[54]  S. Runcorn Book Review: Impact and Explosion Cratering. Proceedings of the Symposium on Planetary Cratering Mechanics. Pergamon Press, 1977, 1299 pp., US $150.00, £98.00, ISBN 0-08-022050-9 , 1984 .

[55]  G. Schubert,et al.  Lunar and Planetary Science Conference, 15th, Houston, TX, March 12-16, 1984, Proceedings. Part 2 , 1984 .

[56]  F. Hörz,et al.  Bunte Breccia of the Ries: Continuous deposits of large impact craters , 1983 .

[57]  B. Mason,et al.  Catalog of Antarctic meteorites , 1980 .

[58]  H. McSween,et al.  Petrology and origin of the shergottite meteorites , 1979 .

[59]  C. J. Elliott,et al.  Analyses of Some Meteorites from the British Museum (Natural History) Collection , 1977 .

[60]  J. P. Willis,et al.  NEW CHEMICAL ANALYSES OF SIX ACHONDRITES AND ONE CHONDRITE , 1974 .

[61]  T. Osborn,et al.  ELEMENTAL ABUNDANCES IN STONE METEORITES , 1972 .

[62]  B. French,et al.  Shock metamorphism of natural materials. , 1966, Science.

[63]  W. M. Bundy Petrology of Gypsum-Anhydrite Deposits in Southwestern Indiana , 1956 .

[64]  H. Craig,et al.  The composition of the stone meteorites and the origin of the meteorites , 1953 .

[65]  S. Taber The Origin of Veinlets in the Silurian and Devonian Strata of Central New York , 1918, The Journal of Geology.