On the affine heat equation for non-convex curves

©1998 American Mathematical Society. First published in Journal of the American Mathematical Society, Vol. 11, No. 3, July 1998; published by the American Mathematical Society.

[1]  Guillermo Sapiro,et al.  Invariant Geometric Evolutions of Surfaces and Volumetric Smoothing , 1997, SIAM J. Appl. Math..

[2]  Ben Andrews,et al.  Contraction of convex hypersurfaces by their affine normal , 1996 .

[3]  P. Olver,et al.  Affine invariant edge maps and active contours , 1995 .

[4]  Guillermo Sapiro,et al.  Area and Length Preserving Geometric Invariant Scale-Spaces , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  P. Olver A ne Invariant Edge Maps and Active Contours , 1995 .

[6]  G. Sapiro,et al.  On affine plane curve evolution , 1994 .

[7]  K. Nomizu Affine Differential Geometry , 1994 .

[8]  Guillermo Sapiro,et al.  Differential Invariant Signatures and Flows in Computer Vision: A Symmetry Group Approach , 1994, Geometry-Driven Diffusion in Computer Vision.

[9]  Decision Systems.,et al.  Classification and uniqueness of invariant geometric flows , 1993 .

[10]  P. Olver Diierential Invariants , 1993 .

[11]  Benjamin B. Kimia,et al.  On the evolution of curves via a function of curvature , 1992 .

[12]  F. Guichard,et al.  Axiomatisation et nouveaux opérateurs de la morphologie mathématique , 1992 .

[13]  Luis Alvarez,et al.  Axiomes et 'equations fondamentales du traitement d''images , 1992 .

[14]  S. Angenent Parabolic equations for curves on surfaces Part II. Intersections, blow-up and generalized solutions , 1991 .

[15]  S. Angenent On the formation of singularities in the curve shortening flow , 1991 .

[16]  S. Angenent Parabolic equations for curves on surfaces Part I. Curves with $p$-integrable curvature , 1990 .

[17]  Grzegorz W. KoŁodko,et al.  © Gordon and Breach, Science Publishers, Inc. , 1990 .

[18]  Brian White,et al.  Some recent developments in differential geometry , 1989 .

[19]  Hiroshi Matano,et al.  Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations , 1989 .

[20]  M. Grayson Shortening embedded curves , 1989 .

[21]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[22]  Sigurd B. Angenent,et al.  The zero set of a solution of a parabolic equation. , 1988 .

[23]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[24]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[25]  M. Gage,et al.  The Curve Shortening Flow , 1987 .

[26]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[27]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[28]  M. Gage Curve shortening makes convex curves circular , 1984 .

[29]  M. Gage,et al.  An isoperimetric inequality with applications to curve shortening , 1983 .

[30]  Su Buqing,et al.  Affine differential geometry , 1983 .

[31]  Hiroshi Matano,et al.  Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation , 1982 .

[32]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[33]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[34]  J. Dieudonne,et al.  Invariant theory, old and new , 1971 .

[35]  H. Weinberger,et al.  Maximum principles in differential equations , 1967 .

[36]  K. Reidemeister Vorlesungen über Differentialgeometrie II , 1926 .