On the affine heat equation for non-convex curves
暂无分享,去创建一个
[1] Guillermo Sapiro,et al. Invariant Geometric Evolutions of Surfaces and Volumetric Smoothing , 1997, SIAM J. Appl. Math..
[2] Ben Andrews,et al. Contraction of convex hypersurfaces by their affine normal , 1996 .
[3] P. Olver,et al. Affine invariant edge maps and active contours , 1995 .
[4] Guillermo Sapiro,et al. Area and Length Preserving Geometric Invariant Scale-Spaces , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[5] P. Olver. A ne Invariant Edge Maps and Active Contours , 1995 .
[6] G. Sapiro,et al. On affine plane curve evolution , 1994 .
[7] K. Nomizu. Affine Differential Geometry , 1994 .
[8] Guillermo Sapiro,et al. Differential Invariant Signatures and Flows in Computer Vision: A Symmetry Group Approach , 1994, Geometry-Driven Diffusion in Computer Vision.
[9] Decision Systems.,et al. Classification and uniqueness of invariant geometric flows , 1993 .
[10] P. Olver. Diierential Invariants , 1993 .
[11] Benjamin B. Kimia,et al. On the evolution of curves via a function of curvature , 1992 .
[12] F. Guichard,et al. Axiomatisation et nouveaux opérateurs de la morphologie mathématique , 1992 .
[13] Luis Alvarez,et al. Axiomes et 'equations fondamentales du traitement d''images , 1992 .
[14] S. Angenent. Parabolic equations for curves on surfaces Part II. Intersections, blow-up and generalized solutions , 1991 .
[15] S. Angenent. On the formation of singularities in the curve shortening flow , 1991 .
[16] S. Angenent. Parabolic equations for curves on surfaces Part I. Curves with $p$-integrable curvature , 1990 .
[17] Grzegorz W. KoŁodko,et al. © Gordon and Breach, Science Publishers, Inc. , 1990 .
[18] Brian White,et al. Some recent developments in differential geometry , 1989 .
[19] Hiroshi Matano,et al. Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations , 1989 .
[20] M. Grayson. Shortening embedded curves , 1989 .
[21] S. Osher,et al. Algorithms Based on Hamilton-Jacobi Formulations , 1988 .
[22] Sigurd B. Angenent,et al. The zero set of a solution of a parabolic equation. , 1988 .
[23] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[24] M. Grayson. The heat equation shrinks embedded plane curves to round points , 1987 .
[25] M. Gage,et al. The Curve Shortening Flow , 1987 .
[26] M. Gage,et al. The heat equation shrinking convex plane curves , 1986 .
[27] P. Olver. Applications of Lie Groups to Differential Equations , 1986 .
[28] M. Gage. Curve shortening makes convex curves circular , 1984 .
[29] M. Gage,et al. An isoperimetric inequality with applications to curve shortening , 1983 .
[30] Su Buqing,et al. Affine differential geometry , 1983 .
[31] Hiroshi Matano,et al. Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation , 1982 .
[32] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[33] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[34] J. Dieudonne,et al. Invariant theory, old and new , 1971 .
[35] H. Weinberger,et al. Maximum principles in differential equations , 1967 .
[36] K. Reidemeister. Vorlesungen über Differentialgeometrie II , 1926 .