Allelic variants of the canine heavy neurofilament (NFH) subunit and extensive phosphorylation in dogs with motor neuron disease.

[1]  F. Galibert,et al.  Structure, chromosomal location, and analysis of the canine Cu/Zn superoxide dismutase (SOD1) gene. , 2002, The Journal of heredity.

[2]  M. Strong,et al.  Phosphorylation state of the native high‐molecular‐weight neurofilament subunit protein from cervical spinal cord in sporadic amyotrophic lateral sclerosis , 2001, Journal of neurochemistry.

[3]  M. Strong,et al.  Characterization of Neuronal Intermediate Filament Protein Expression in Cervical Spinal Motor Neurons in Sporadic Amyotrophic Lateral Sclerosis (ALS) , 2000, Journal of neuropathology and experimental neurology.

[4]  J. Gu,et al.  Integrin α1β1-Mediated Activation of Cyclin-Dependent Kinase 5 Activity Is Involved in Neurite Outgrowth and Human Neurofilament Protein H Lys-Ser-Pro Tail Domain Phosphorylation , 2000, The Journal of Neuroscience.

[5]  M. Pinter,et al.  Functional motor unit failure precedes neuromuscular degeneration in canine motor neuron disease , 2000, Annals of neurology.

[6]  F. Galibert,et al.  An integrated linkage-radiation hybrid map of the canine genome , 2000, Mammalian Genome.

[7]  C. Shaw,et al.  Phosphorylation of neurofilament heavy chain side-arms by stress activated protein kinase-1b/Jun N-terminal kinase-3. , 2000, Journal of cell science.

[8]  F. Galibert,et al.  Construction and optimization of a dog whole-genome radiation hybrid panel , 1999, Mammalian Genome.

[9]  A Al-Chalabi,et al.  Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. , 1999, Human molecular genetics.

[10]  F. Galibert,et al.  A whole-genome radiation hybrid map of the dog genome. , 1998, Genomics.

[11]  M. Pinter,et al.  Alterations in Cyclin-Dependent Protein Kinase 5 (CDK5) Protein Levels, Activity and Immunocytochemistry in Canine Motor Neuron Disease , 1998, Journal of neuropathology and experimental neurology.

[12]  E. Ostrander,et al.  Hereditary canine spinal muscular atrophy is phenotypically similar but molecularly distinct from human spinal muscular atrophy. , 1998, The Journal of heredity.

[13]  Veeranna,et al.  Mitogen-Activated Protein Kinases (Erk1,2) Phosphorylate Lys-Ser-Pro (KSP) Repeats in Neurofilament Proteins NF-H and NF-M , 1998, The Journal of Neuroscience.

[14]  Veeranna,et al.  Characterization of the phosphorylation sites of human high molecular weight neurofilament protein by electrospray ionization tandem mass spectrometry and database searching. , 1998, Biochemistry.

[15]  K. Konvička,et al.  Neurofilament (NF) Assembly; Divergent Characteristics of Human and Rodent NF-L Subunits* , 1998, The Journal of Biological Chemistry.

[16]  B. Giasson,et al.  Study of Proline-Directed Protein Kinases Involved in Phosphorylation of the Heavy Neurofilament Subunit , 1997, The Journal of Neuroscience.

[17]  M. Pinter,et al.  Effects of 4-Aminopyridine on Muscle and Motor Unit Force in Canine Motor Neuron Disease , 1997, The Journal of Neuroscience.

[18]  B. Giasson,et al.  Aberrant Stress-induced Phosphorylation of Perikaryal Neurofilaments* , 1996, The Journal of Biological Chemistry.

[19]  N. Wallace,et al.  Motor unit behavior in canine motor neuron disease , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  J. Weissenbach,et al.  Identification and characterization of a spinal muscular atrophy-determining gene , 1995, Cell.

[21]  H. Gainer,et al.  Identification of Endogenously Phosphorylated KSP Sites in the High‐Molecular‐Weight Rat Neurofilament Protein , 1994, Journal of neurochemistry.

[22]  Aravinda Chakravarti,et al.  Automated construction of genetic linkage maps using an expert system (MultiMap): a human genome linkage map , 1994, Nature Genetics.

[23]  T. Matise,et al.  Erratum: Automated construction of genetic linkage maps using an expert system (MultiMap): A human genome linkage map (Nature Genetics (1994) 6 (384- 390)) , 1994 .

[24]  P. Wong,et al.  The rod domain of NF-L determines neurofilament architecture, whereas the end domains specify filament assembly and network formation , 1993, The Journal of cell biology.

[25]  L. Cork,et al.  Alterations in neurofilament mRNA in hereditary canine spinal muscular atrophy. , 1993, Laboratory investigation; a journal of technical methods and pathology.

[26]  M. Pericak-Vance,et al.  Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. , 1993, Science.

[27]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[28]  S. Chin,et al.  Effects of truncated neurofilament proteins on the endogenous intermediate filaments in transfected fibroblasts. , 1991, Journal of cell science.

[29]  N. Hirokawa,et al.  Molecular architecture of the neurofilament. II. Reassembly process of neurofilament L protein in vitro. , 1990, Journal of molecular biology.

[30]  D. Price,et al.  Hereditary canine spinal muscular atrophy: canine motor neuron disease. , 1990, Canadian journal of veterinary research = Revue canadienne de recherche veterinaire.

[31]  R. Nixon,et al.  Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments , 1988, The Journal of cell biology.

[32]  D. Price,et al.  Neurofilamentous Abnormalities in Motor Neurons in Spontaneously Occurring Animal Disorders , 1988, Journal of neuropathology and experimental neurology.

[33]  E. Gardner,et al.  Formation of 10‐nanometer filaments from the 150k‐dalton neurofilament protein in vitro , 1984, Journal of neuroscience research.

[34]  R. Liem,et al.  Purification of individual components of the neurofilament triplet: filament assembly from the 70 000-dalton subunit. , 1982, Biochemistry.

[35]  D. Price,et al.  Hereditary canine spinal muscular atrophy: a canine model of human motor neuron disease. , 1982, Progress in clinical and biological research.

[36]  D. Price,et al.  Pathology of motor neurons in accelerated hereditary canine spinal muscular atrophy. , 1982, Laboratory investigation; a journal of technical methods and pathology.

[37]  D. Price,et al.  Animal model of human disease: motor neuron disease: spinal muscular atrophy and amyotrophic lateral sclerosis. , 1980, The American journal of pathology.

[38]  D. Price,et al.  Hereditary spinal muscular atrophy in Brittany Spaniels: clinical manifestations. , 1979, Journal of the American Veterinary Medical Association.

[39]  D. Price,et al.  HEREDITARY CANINE SPINAL MUSCULAR ATROPHY , 1979, Journal of neuropathology and experimental neurology.