Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field

In the beginning of the 21st century, the world is facing the major challenge of finding energy sources to satisfy the ever-increasing energy consumption while preserving the environment. In the race to search alternative energy sources, thermoelectric generators are called to play their role in the improvement of the efficiency of the actual energy system by harvesting nowadays wasted heat. This review deals with the novel aspects of nano-structuring of thermoelectric materials, from the so called 3D nanobulk materials down to the incorporation of 0D quantum dots in thermoelectric structures. The improvement in the efficiency of nanoengineering thermoelectrics benefits mainly from the reduction in the thermal conductivity. Other promising trends in thermoelectricity are also reviewed, such as, novel nano-structures, trending materials (polymers, thermionic materials or Zintl phases), spin caloritronics, thermoelectricity in atomic and molecular junctions, or recent developments in theoretical calculations. Finally the review ends with a brief review on recent thermoelectric devices.

[1]  S. Maekawa,et al.  Observation of the spin Seebeck effect , 2008, Nature.

[2]  Gang Chen,et al.  Thermal conductivity modeling of periodic two-dimensional nanocomposites , 2004 .

[3]  G. J. Snyder,et al.  Zintl phases for thermoelectric devices. , 2007, Dalton transactions.

[4]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[5]  Yiying Wu,et al.  Thermal conductivity of Si/SiGe superlattice nanowires , 2003 .

[6]  Andreas Kornowski,et al.  Synthesis and Thermoelectric Characterization of Bi2Te3 Nanoparticles , 2009, 1003.0621.

[7]  Hohyun Lee,et al.  Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy , 2008 .

[8]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[9]  Marisol Martín-González,et al.  High-aspect-ratio and highly ordered 15-nm porous alumina templates. , 2013, ACS applied materials & interfaces.

[10]  N. Myung,et al.  Fabrication Method for Thermoelectric Nanodevices , 2005 .

[11]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[12]  Ulrich Burkhardt,et al.  Synthesis and high thermoelectric efficiency of Zintl phase YbCd2−xZnxSb2 , 2009 .

[13]  Jean-Pierre Fleurial,et al.  Nanostructured materials for thermoelectric applications. , 2010, Chemical communications.

[14]  Uli Lemmer,et al.  Organic Semiconductors for Thermoelectric Applications , 2010 .

[15]  C. Boulanger,et al.  Thermoelectric Material Electroplating: a Historical Review , 2010 .

[16]  Donald T. Morelli,et al.  Magnetoresistance of bismuth nanowire arrays: A possible transition from one-dimensional to three-dimensional localization , 1998 .

[17]  Han Li,et al.  Enhanced thermoelectric performance and novel nanopores in AgSbTe2 prepared by melt spinning , 2011 .

[18]  V. Kantser,et al.  Thermoelectric properties of bismuth telluride nanowires in the constant relaxation-time approximation , 2008 .

[19]  S. R. Harutyunyan,et al.  Fabrication and Characterization of Electrodeposited Bismuth Telluride Films and Nanowires , 2010 .

[20]  C. Erk,et al.  Nanoscale zinc antimonides: synthesis and phase stability. , 2006, Inorganic chemistry.

[21]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[22]  B. Pedersen,et al.  Thermally stable thermoelectric Zn4Sb3 by zone-melting synthesis , 2008 .

[23]  Joseph P. Heremans,et al.  Nanometer-Scale Thermoelectric Materials , 2007 .

[24]  Ronald Gronsky,et al.  Electrodeposition of Bi1-xSbx Films and 200-nm Wire Arrays from a Nonaqueous Solvent , 2003 .

[25]  Mats Nygren,et al.  Influence of sample compaction on the thermoelectric performance of Zn4Sb3 , 2006 .

[26]  Weishu Liu,et al.  Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering , 2008 .

[27]  Timothy D. Sands,et al.  Thermal conductivity of (Zr,W)N/ScN metal/semiconductor multilayers and superlattices , 2009 .

[28]  Haining Hu,et al.  Ordered CoSb3 nanowire arrays synthesized by electrodeposition , 2006 .

[29]  Liang Li,et al.  Pulsed electrodeposition of single-crystalline Bi2Te3 nanowire arrays , 2006, Nanotechnology.

[30]  Albert Fert,et al.  Giant magnetoresistance in magnetic multilayered nanowires , 1994 .

[31]  H. Kosina,et al.  Effects of confinement and orientation on the thermoelectric power factor of silicon nanowires , 2011, 1106.2152.

[32]  C. Cullen,et al.  Thermal and electrical characterization of nanocomposites for thermoelectrics , 2006, Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. ITHERM 2006..

[33]  Takaaki Koga,et al.  Carrier Pocket Engineering to Design Superior Thermoelectric Materials Using GaAs/AlAs Superlattices , 1998 .

[34]  Hans Kosina,et al.  On the Interplay Between Electrical Conductivity and Seebeck Coefficient in Ultra-Narrow Silicon Nanowires , 2012, Journal of Electronic Materials.

[35]  Slobodan Mitrovic,et al.  Reduction of thermal conductivity in phononic nanomesh structures. , 2010, Nature nanotechnology.

[36]  Makoto Takahashi,et al.  The composition and conductivity of electrodeposited BiTe alloy films , 1994 .

[37]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[38]  Ronald Gronsky,et al.  Insights into the Electrodeposition of Bi2Te3 , 2002 .

[39]  H Adachi,et al.  Spin Seebeck insulator. , 2010, Nature Materials.

[40]  Enrique Maciá,et al.  DNA-based thermoelectric devices: A theoretical prospective , 2007 .

[41]  Takashi Goto,et al.  Synthesis and thermoelectric properties of p-type- and n-type-filled skutterudite RyMxCo4−xSb12(R:Ce,Ba,Y;M:Fe,Ni) , 2005 .

[42]  C. Mijangos,et al.  Tailored polymer-based nanorods and nanotubes by "template synthesis": From preparation to applications , 2012 .

[43]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[44]  Zhen Yao,et al.  Fabrication of large-area single crystal bismuth nanowire arrays , 2003 .

[45]  Eckhard Müller,et al.  Preparation and thermoelectric properties of AgPbmSbTe2+m alloys , 2009 .

[46]  D D Awschalom,et al.  Spin-seebeck effect: a phonon driven spin distribution. , 2011, Physical review letters.

[47]  Sossina M. Haile,et al.  Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1–xZn2Sb2 , 2005 .

[48]  Peter C. Searson,et al.  Giant positive magnetoresistance of Bi nanowire arrays in high magnetic fields , 1999 .

[49]  Han Li,et al.  Enhancement of the thermoelectric performance of β-Zn4Sb3 by in situ nanostructures and minute Cd-doping , 2011 .

[50]  Reinhard Neumann,et al.  Tuning the Geometrical and Crystallographic Characteristics of Bi2Te3 Nanowires by Electrodeposition in Ion-Track Membranes , 2012 .

[51]  Richard W Siegel,et al.  A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. , 2012, Nature materials.

[52]  A. Heeger,et al.  Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x , 1977 .

[53]  Rama Venkatasubramanian,et al.  Aspects of Thin-Film Superlattice Thermoelectric Materials, Devices, and Applications , 2006 .

[54]  George S. Nolas,et al.  Recent Developments in Bulk Thermoelectric Materials , 2006 .

[55]  Joachim Nurnus,et al.  High thermoelectric figure of merit ZT in PbTe and Bi2Te3-based superlattices by a reduction of the thermal conductivity , 2002 .

[56]  Zhifeng Ren,et al.  Enhancement of Thermoelectric Figure‐of‐Merit by a Bulk Nanostructuring Approach , 2010 .

[57]  Kornelius Nielsch,et al.  Power factor measurements of bismuth telluride nanowires grown by pulsed electrodeposition , 2010 .

[58]  G. Meng,et al.  Fabrication of Highly Ordered InSb Nanowire Arrays by Electrodeposition in Porous Anodic Alumina Membranes , 2005 .

[59]  Q. Li,et al.  Bismuth telluride (Bi2Te3) nanowires: synthesis by cyclic electrodeposition/stripping, thinning by electrooxidation, and electrical power generation. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[60]  Kefeng Cai,et al.  In situ fabrication and thermoelectric properties of PbTe–polyaniline composite nanostructures , 2011 .

[61]  Eckhard Müller,et al.  Macroscopic thermoelectric inhomogeneities in (AgSbTe2)x(PbTe)1−x , 2005 .

[62]  Sven Müller,et al.  Electrochemical synthesis of Bi1−xSbx nanowires with simultaneous control on size, composition, and surface roughness , 2012 .

[63]  Tiejun Zhu,et al.  Nanostructuring and thermoelectric properties of bulk skutterudite compound CoSb3 , 2007 .

[64]  Arun Majumdar,et al.  Thermoelectricity in Molecular Junctions , 2007, Science.

[65]  Hans Kosina,et al.  Thermoelectric Properties of Scaled Silicon Nanowires Using the sp3d 5s*-SO Atomistic Tight-Binding Model and Boltzmann Transport , 2011 .

[66]  Yong X. Gan,et al.  Advances in Thermoelectric Energy Conversion Nanocomposites , 2011 .

[67]  A. Zakhidov,et al.  Nanoimprint of dehydrated PEDOT:PSS for organic photovoltaics , 2011, Nanotechnology.

[68]  Giovanni Saggio,et al.  Piezoresistive behaviour of flexible PEDOT:PSS based sensors , 2009 .

[69]  Hohyun Lee,et al.  Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. , 2008, Nano letters.

[70]  George S. Nolas,et al.  PbTe nanocomposites synthesized from PbTe nanocrystals , 2007 .

[71]  Santiago Serrano-Guisan,et al.  Spin-dependent Peltier effect of perpendicular currents in multilayered nanowires , 2006 .

[72]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[73]  Yu-Ming Lin,et al.  Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires , 2000 .

[74]  Lei Wang,et al.  Thermoelectric properties of conducting polyaniline/graphite composites , 2011 .

[75]  Li Shi,et al.  Thermoelectric properties of individual electrodeposited bismuth telluride nanowires , 2005 .

[76]  Rama Venkatasubramanian,et al.  MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications , 1997 .

[77]  M S Sander,et al.  Electrodeposition of ordered Bi2Te3 nanowire arrays. , 2001, Journal of the American Chemical Society.

[78]  Gang Chen,et al.  Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires , 2004 .

[79]  Qin Yao,et al.  Template synthesis of heterostructured polyaniline/Bi2Te3 nanowires , 2005 .

[80]  P. J. Taylor,et al.  Thermoelectric quantum-dot superlattices with high ZT , 2000 .

[81]  Yu-Ming Lin,et al.  Semimetal–semiconductor transition in Bi1−xSbx alloy nanowires and their thermoelectric properties , 2002 .

[82]  Ronald Gronsky,et al.  The electrodeposition of high-density, ordered arrays of Bi1-xSbx nanowires. , 2003, Journal of the American Chemical Society.

[83]  Mario Leclerc,et al.  Conducting polymers: Efficient thermoelectric materials , 2011 .

[84]  A. B. Kaiser,et al.  Thermoelectric power and conductivity of iodine‐doped ‘‘new’’ polyacetylene , 1991 .

[85]  Xianli Su,et al.  Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys. , 2011, Journal of the American Chemical Society.

[86]  R. Opila,et al.  Promising thermoelectric properties of commercial PEDOT:PSS materials and their bi2Te3 powder composites. , 2010, ACS applied materials & interfaces.

[87]  Donald T. Morelli,et al.  Thermopower enhancement in lead telluride nanostructures , 2004 .

[88]  A. Majumdar Thermoelectricity in Semiconductor Nanostructures , 2004, Science.

[89]  Renkun Chen,et al.  Thermal transport in phononic crystals: The role of zone folding effect , 2012 .

[90]  Choongho Yu,et al.  Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). , 2010, ACS nano.

[91]  Ali Shakouri,et al.  Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features , 2010, Advanced materials.

[92]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[93]  G. Froyer,et al.  Optical study and vibrational analysis of the poly (3,4-ethylenedioxythiophene) (PEDT) , 1999 .

[94]  R. Penner,et al.  Synthesis of PbTe nanowire arrays using lithographically patterned nanowire electrodeposition. , 2008, Nano letters.

[95]  Ali Shakouri,et al.  A comparison of thin film microrefrigerators based on Si/SiGe superlattice and bulk SiGe , 2008, Microelectron. J..

[96]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[97]  M. Dresselhaus,et al.  Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .

[98]  Kevin C. See,et al.  Water-processable polymer-nanocrystal hybrids for thermoelectrics. , 2010, Nano letters.

[99]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[100]  Wenqing Zhang,et al.  Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. , 2010, ACS nano.

[101]  Ionut Enculescu,et al.  Electrochemical Deposition of PbSe1-xTex Nanorod Arrays Using Ion Track Etched Membranes as Template , 2004 .

[102]  S. Said,et al.  A review on thermoelectric renewable energy: Principle parameters that affect their performance , 2014 .

[103]  Angelica M. Stacy,et al.  Assembly and measurement of a hybrid nanowire-bulk thermoelectric device , 2006 .

[104]  Marisol Martín-González,et al.  In-depth study of self-ordered porous alumina in the 140-400 nm pore diameter range , 2012 .

[105]  M. Martín-González,et al.  Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor , 2013 .

[106]  Li Shi,et al.  Thermoelectric and structural characterizations of individual electrodeposited bismuth telluride nanowires , 2009 .

[107]  Dong Hyun Lee,et al.  Holey silicon as an efficient thermoelectric material. , 2010, Nano letters.

[108]  Christoph H. Grein,et al.  Multilayer thermoelectric refrigeration in Hg1−xCdxTe superlattices , 1999 .

[109]  Han Li,et al.  High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase , 2009 .

[110]  Liang Li,et al.  A route to fabricate single crystalline bismuth nanowire arrays with different diameters , 2003 .

[111]  Jane E. Cornett,et al.  Universal scaling relations for the thermoelectric power factor of semiconducting nanostructures , 2011 .

[112]  Jihui Yang,et al.  Enhanced thermoelectric figure of merit of CoSb3 via large-defect scattering , 2004 .

[113]  Charles R. Martin,et al.  Template Synthesis of Bismuth Telluride Nanowires , 1999 .

[114]  Ali Shakouri,et al.  Improved thermoelectric power factor in metal-based superlattices. , 2004, Physical review letters.

[115]  Margaret A. K. Ryan,et al.  Thermal properties of electrodeposited bismuth telluride nanowires embedded in amorphous alumina , 2004 .

[116]  Gang Chen,et al.  Enhancement in Thermoelectric Figure‐Of‐Merit of an N‐Type Half‐Heusler Compound by the Nanocomposite Approach , 2011 .

[117]  Heng Wang,et al.  Synthesis and transport property of AgSbTe2 as a promising thermoelectric compound , 2008 .

[118]  José R. Ares,et al.  Termoelectricidad: Orígenes, fenomenología y materiales alternativos , 2012 .

[119]  Jun Li,et al.  Thermoelectric properties of indium-filled InxRh4Sb12 skutterudites , 2011 .

[120]  George N. Hatsopoulos,et al.  Measured Thermal Efficiencies of a Diode Configuration of a Thermo Electron Engine , 1958 .

[121]  M. P. Walsh,et al.  Nanostructured thermoelectric materials , 2005 .

[122]  M. S. Dresselhaus,et al.  Theoretical modeling of thermoelectricity in Bi nanowires , 1999 .

[123]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[124]  G. J. Snyder,et al.  Interfaces in bulk thermoelectric materials: A review for Current Opinion in Colloid and Interface Science , 2009 .

[125]  Zhen Yao,et al.  Large-area Sb2Te3 nanowire arrays. , 2005, The journal of physical chemistry. B.

[126]  Gang Zhang,et al.  Impacts of doping on thermal and thermoelectric properties of nanomaterials. , 2010, Nanoscale.

[127]  Guanghai Li,et al.  A new routine to fabricate Bi single crystalline tapering junction nanowire arrays , 2005 .

[128]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[129]  Changhong Liu,et al.  A Promising Approach to Enhanced Thermoelectric Properties Using Carbon Nanotube Networks , 2010, Advanced materials.

[130]  A. F. Richter,et al.  Insulator-to-metal transition in polyaniline , 1987 .

[131]  Jane E. Cornett,et al.  Thermoelectric figure of merit calculations for semiconducting nanowires , 2011 .

[132]  Min Zhou,et al.  High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering , 2006 .

[133]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[134]  Ronald Gronsky,et al.  Structure of Bismuth Telluride Nanowire Arrays Fabricated by Electrodeposition into Porous Anodic Alumina Templates , 2003 .

[135]  Ronald Gronsky,et al.  High‐Density 40 nm Diameter Sb‐Rich Bi2–xSbxTe3 Nanowire Arrays , 2003 .

[136]  Peter C. Searson,et al.  Structural and magneto-transport properties of electrodeposited bismuth nanowires , 1998 .

[137]  David C. Martin,et al.  Electrochemical polymerization and properties of PEDOT/S-EDOT on neural microelectrode arrays , 2004 .

[138]  Quirin Schiermeier German task force outraged by changes to science fraud report , 2002, Nature.

[139]  Terry M. Tritt,et al.  Properties of Nanostructured One-Dimensional and Composite Thermoelectric Materials , 2006 .

[140]  H. Yan,et al.  Stretched polyaniline films doped by (±)-10-camphorsulfonic acid : Anisotropy and improvement of thermoelectric properties , 2001 .

[141]  Ke Xu,et al.  Size‐Dependent Transport and Thermoelectric Properties of Individual Polycrystalline Bismuth Nanowires , 2006 .

[142]  N. Stein,et al.  Optimization of chemical and electrochemical parameters for the preparation of n-type Bi2Te2.7Se0.3 thin films by electrodeposition , 2003 .

[143]  Margaret A. K. Ryan,et al.  Electrodeposition of Thermoelectric Superlattice Nanowires , 2007 .

[144]  Enrique Maciá,et al.  Thermoelectric power and electrical conductance of DNA based molecular junctions , 2005 .

[145]  Xing Zhang,et al.  Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites , 2005 .

[146]  Georg K. H. Madsen,et al.  Enhanced Thermoelectric Properties in Zinc Antimonides , 2011 .

[147]  K. Salzgeber,et al.  Skutterudites: Thermoelectric Materials for Automotive Applications? , 2010 .

[148]  Choongho Yu,et al.  Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. , 2011, ACS nano.

[149]  Terry M. Tritt,et al.  Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 °C , 2006 .

[150]  X. Crispin,et al.  Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). , 2011, Nature materials.

[151]  Philippe M. Vereecken,et al.  Magnetotransport properties of bismuth films on p-GaAs , 2000 .

[152]  Peter C. Searson,et al.  Finite-size effects in bismuth nanowires , 1998 .

[153]  Jean-Pierre Fleurial,et al.  Preparation and thermoelectric properties of semiconducting Zn4Sb3 , 1997 .

[154]  Terry M. Tritt,et al.  High thermoelectric performance BiSbTe alloy with unique low-dimensional structure , 2009 .

[155]  W. Ao,et al.  Synthesis and Characterization of Polythiophene/Bi2Te3 Nanocomposite Thermoelectric Material , 2011 .

[156]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[157]  Pierre F. P. Poudeu,et al.  High figure of merit in nanostructured n-type KPbmSbTe m+2 thermoelectric materials , 2010 .

[158]  Ronald Gronsky,et al.  Fabrication of High‐Density, High Aspect Ratio, Large‐Area Bismuth Telluride Nanowire Arrays by Electrodeposition into Porous Anodic Alumina Templates , 2002 .

[159]  Ryoji Funahashi,et al.  Oxide thermoelectrics: The challenges, progress, and outlook , 2011 .

[160]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[161]  Noam Rappaport,et al.  Charge Transport in Disordered Organic Materials and Its Relevance to Thin‐Film Devices: A Tutorial Review , 2009 .

[162]  Ronald Gronsky,et al.  Direct Electrodeposition of Highly Dense 50 nm Bi2Te3-ySey Nanowire Arrays , 2003 .

[163]  Qingjie Zhang,et al.  Synthesis and thermoelectric properties of hydrochloric acid-doped polyaniline , 2010 .

[164]  Donald T. Morelli,et al.  Thermopower Enhancement in PbTe with Pb Precipitates , 2005 .

[165]  Supriyo Datta,et al.  Influence of Dimensionality on Thermoelectric Device Performance , 2008, 0811.3632.

[166]  Joseph P. Heremans,et al.  Resonant levels in bulk thermoelectric semiconductors , 2012 .

[167]  Eric A Shaner,et al.  Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. , 2011, Nano letters.

[168]  Natalio Mingo,et al.  Thermoelectric figure of merit and maximum power factor in III–V semiconductor nanowires , 2004 .

[169]  D. D. Awschalom,et al.  Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. , 2010, Nature materials.

[170]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical Review B (Condensed Matter).

[171]  Jing Shi,et al.  Enhanced thermoelectric performance of (Sb 0.75 Bi 0.25 ) 2 Te 3 compound from first-principles calculations , 2010 .

[172]  H. Scherrer,et al.  Effect of antimony content on the thermoelectric figure of merit of Bi1-xSbx alloys , 1998 .

[173]  M. D. Ulrich,et al.  Comparison of solid-state thermionic refrigeration with thermoelectric refrigeration , 2001 .

[174]  Ali Shakouri,et al.  Heterostructure integrated thermionic coolers , 1997 .

[175]  Weili Cai,et al.  Electrochemical Deposition of Well-ordered Single-crystal PbTe Nanowire Arrays , 2007 .

[176]  Han Li,et al.  High thermoelectric figure of merit and nanostructuring in bulk AgSbTe2 , 2010 .

[177]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[178]  Eric S. Toberer,et al.  Zintl Chemistry for Designing High Efficiency Thermoelectric Materials , 2010 .

[179]  Eric S. Toberer,et al.  Electronic structure and transport in thermoelectric compounds AZn2Sb2 (A = Sr, Ca, Yb, Eu). , 2010, Dalton transactions.

[180]  P. Cui,et al.  Direct electrodeposition of highly dense Bi/Sb superlattice nanowire arrays. , 2005, Journal of the American Chemical Society.

[181]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[182]  Jonathan D'Angelo,et al.  High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2. , 2006, Angewandte Chemie.

[183]  Ctirad Uher,et al.  High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. , 2011, Journal of the American Chemical Society.

[184]  Jackie Y. Ying,et al.  Bismuth quantum-wire arrays fabricated by a vacuum melting and pressure injection process , 1998 .

[185]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[186]  Bongyoung Yoo,et al.  Recent progress in electrodeposition of thermoelectric thin films and nanostructures , 2008 .

[187]  Choongho Yu,et al.  Thermoelectric behavior of segregated-network polymer nanocomposites. , 2008, Nano letters.

[188]  Zhifeng Ren,et al.  The great improvement effect of pores on ZT in Co1−xNixSb3 system , 2008 .

[189]  X. Zhao,et al.  Thermoelectric properties of Bi0.5Sb1.5Te3/polyaniline hybrids prepared by mechanical blending , 2002 .