1-D constitutive model for evolution of stress-induced R-phase and localized Lüders-like stress-induced martensitic transformation of super-elastic NiTi wires

[1]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[2]  Wael Zaki,et al.  Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling , 2011 .

[3]  S. Padula,et al.  A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions , 2011 .

[4]  W. Zaki,et al.  A constitutive model for shape memory alloys accounting for thermomechanical coupling , 2011 .

[5]  G. Eggeler,et al.  On the Stress-Induced Formation of R-Phase in Ultra-Fine-Grained Ni-Rich NiTi Shape Memory Alloys , 2011 .

[6]  D. Lagoudas,et al.  Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys , 2010 .

[7]  P. Anderson,et al.  Coupling between martensitic phase transformations and plasticity: A microstructure-based finite element model , 2010 .

[8]  P. Šittner,et al.  Thermomechanical model for NiTi shape memory wires , 2010 .

[9]  T. P. G. Thamburaja A finite-deformation-based phenomenological theory for shape-memory alloys , 2010 .

[10]  Alessandro Reali,et al.  A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings , 2010 .

[11]  Marcus L. Young,et al.  Phase volume fractions and strain measurements in an ultrafine-grained NiTi shape-memory alloy during tensile loading , 2010 .

[12]  Guozheng Kang,et al.  Constitutive model for uniaxial transformation ratchetting of super-elastic NiTi shape memory alloy at room temperature , 2010 .

[13]  V. Levitas,et al.  Micromechanical modeling of stress-induced phase transformations. Part 2. Computational algorithms and examples , 2009 .

[14]  Valery I. Levitas,et al.  Micromechanical modeling of stress-induced phase transformations. Part 1. Thermodynamics and kinetics of coupled interface propagation and reorientation , 2009 .

[15]  Z. Yue,et al.  Phase transformation behavior of pseudoelastic NiTi shape memory alloys under large strain , 2008 .

[16]  Zhufeng Yue,et al.  Micromechanical modelling of the effect of plastic deformation on the mechanical behaviour in pseudoelastic shape memory alloys , 2008 .

[17]  Jinghong Fan,et al.  A microstructure-based constitutive model for the pseudoelastic behavior of NiTi SMAs , 2008 .

[18]  G. Eggeler,et al.  Pseudoelastic cycling and ageing effects at ambient temperature in nanocrystalline Ni-rich NiTi wire , 2008 .

[19]  Stefanie Reese,et al.  Finite deformation pseudo-elasticity of shape memory alloys – Constitutive modelling and finite element implementation , 2008 .

[20]  F. Auricchio,et al.  Rate-dependent Thermo-mechanical Modelling of Superelastic Shape-memory Alloys for Seismic Applications , 2008 .

[21]  Wael Zaki,et al.  A 3D model of the cyclic thermomechanical behavior of shape memory alloys , 2007 .

[22]  Dimitris C. Lagoudas,et al.  A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite , 2007 .

[23]  Chongdu Cho,et al.  The Investigation of a Shape Memory Alloy Micro-Damper for MEMS Applications , 2007, Sensors.

[24]  Alessandro Reali,et al.  A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity , 2007 .

[25]  John A. Shaw,et al.  Thermodynamics of Shape Memory Alloy Wire: Modeling, Experiments, and Application , 2006 .

[26]  V. Novák,et al.  R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals , 2006 .

[27]  Zhaowei Zhong,et al.  Development of a gripper using SMA wire , 2006 .

[28]  Vassilis P. Panoskaltsis,et al.  On the thermomechanical modeling of shape memory alloys , 2004 .

[29]  Yong Qing Fu,et al.  TiNi-based thin films in MEMS applications: a review , 2004 .

[30]  J. Shaw,et al.  Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy , 2004 .

[31]  P. Papadopoulos,et al.  An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading , 2003 .

[32]  Jordi Ortín,et al.  Hysteresis in shape-memory alloys , 2002 .

[33]  Manfred Kohl,et al.  SMA microgripper system , 2002 .

[34]  J. Shaw A thermomechanical model for a 1-D shape memory alloy wire with propagating instabilities , 2002 .

[35]  J. Shaw,et al.  The Effect of Uniaxial Cyclic Deformation on the Evolution of Phase Transformation Fronts in Pseudoelastic NiTi Wire , 2001, Adaptive Structures and Material Systems.

[36]  E. Makino,et al.  Fabrication of TiNi shape memory micropump , 2001 .

[37]  Shekhar Bhansali,et al.  Novel fabrication technique of TiNi shape memory alloy film using separate Ti and Ni targets , 2000 .

[38]  J. Shaw Simulations of localized thermo-mechanical behavior in a NiTi shape memory alloy , 2000 .

[39]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations , 1999 .

[40]  Eduard Oberaigner,et al.  TRANSFORMATION INDUCED PLASTICITY REVISED: AN UPDATED FORMULATION , 1998 .

[41]  Stelios Kyriakides,et al.  Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension , 1997 .

[42]  E. Sacco,et al.  A one-dimensional model for superelastic shape-memory alloys with different elastic properties between austenite and martensite , 1997 .

[43]  Sang-Joo Kim,et al.  Cyclic effects in shape-memory alloys: a one-dimensional continuum model , 1997 .

[44]  C. Lexcellent,et al.  Micromechanics-based modeling of two-way memory effect of a single crystalline shape-memory alloy , 1997 .

[45]  Stelios Kyriakides,et al.  On the nucleation and propagation of phase transformation fronts in a NiTi alloy , 1997 .

[46]  H. Tobushi,et al.  Phenomenological analysis of plateaus on stress-strain hysteresis in TiNi shape memory alloy wires , 1996 .

[47]  F. Auricchio,et al.  Generalized plasticity and shape-memory alloys , 1996 .

[48]  J. Shaw,et al.  Thermomechanical aspects of NiTi , 1995 .

[49]  H. Tobushi,et al.  Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads , 1995 .

[50]  Hisaaki Tobushi,et al.  Pseudoelastic Behaviour of TiNi Shape Memory Alloy Subjected to Strain Variations , 1994 .

[51]  L. Brinson One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable , 1993 .

[52]  Craig A. Rogers,et al.  One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials , 1990 .

[53]  Sylvain Calloch,et al.  A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings , 2009 .

[54]  K. L. Ng,et al.  Stress-induced phase transformation and detwinning in NiTi polycrystalline shape memory alloy tubes , 2006 .

[55]  S. Calloch,et al.  A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings , 2004 .

[56]  Yinong Liu,et al.  Lüders-like deformation associated with stress-induced martensitic transformation in NiTi , 2004 .

[57]  G. Bourbon,et al.  The two way shape memory effect of shape memory alloys: an experimental study and a phenomenological model , 2000 .

[58]  Miinshiou Huang,et al.  A multivariant micromechanical model for SMAs Part 1. Crystallographic issues for single crystal model , 2000 .

[59]  Petr Šittner,et al.  Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals , 2000 .

[60]  Miinshiou Huang,et al.  A multivariant micromechanical model for SMAs Part 2. Polycrystal model , 2000 .

[61]  M. Boubakar,et al.  On the thermomechanical modelling of shape memory alloys , 2000 .

[62]  D. Lagoudas,et al.  A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy , 1996 .

[63]  James G. Boyd,et al.  A thermodynamical constitutive model for shape memory materials. Part II. The SMA composite material , 1996 .

[64]  Qingping Sun,et al.  Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys. I: Derivation of general relations , 1993 .

[65]  Keh Chih Hwang,et al.  Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys. II: Study of the individual phenomena , 1993 .