Photonic quasi-crystal terahertz lasers

Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of ‘defects’, which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1–0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum.

[1]  T. Tamamura,et al.  Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice. , 2004, Physical review letters.

[2]  Vincenzo Spagnolo,et al.  Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations , 2006 .

[3]  A. Tredicucci,et al.  Photonic engineering of surface‐emitting terahertz quantum cascade lasers , 2011 .

[4]  Diederik S. Wiersma,et al.  Disordered photonics , 2013, Nature Photonics.

[5]  Ajay Nahata,et al.  Optics of photonic quasicrystals , 2013, Nature Photonics.

[6]  John D. Joannopoulos,et al.  Laser action from two-dimensional distributed feedback in photonic crystals , 1999 .

[7]  Mattias Beck,et al.  Low-divergence single-mode terahertz quantum cascade laser , 2009 .

[8]  Edmund Linfield,et al.  Low divergence single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers. , 2013, Optics express.

[9]  Thomas F. Krauss,et al.  Two-dimensional Penrose-tiled photonic quasicrystals: from diffraction pattern to band structure , 2000 .

[10]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[11]  Carlo Sirtori,et al.  Wave engineering with THz quantum cascade lasers , 2013, Nature Photonics.

[12]  L. Dal Negro,et al.  Deterministic aperiodic nanostructures for photonics and plasmonics applications , 2012 .

[13]  Ronald W. Waynant,et al.  Laser therapy: A review of its mechanism of action and potential medical applications , 2011 .

[14]  Kengo Nozaki,et al.  Quasiperiodic photonic crystal microcavity lasers , 2004 .

[15]  Masayuki Fujita,et al.  Capture of a terahertz wave in a photonic-crystal slab , 2014, Nature Photonics.

[16]  R. Colombelli,et al.  Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions , 2009, Nature.

[17]  Qing Hu,et al.  186 K Operation of Terahertz Quantum-Cascade Lasers Based on a Diagonal Design , 2009 .

[18]  E. Linfield,et al.  Surface-emitting terahertz quantum cascade lasers with continuous-wave power in the tens of milliwatt range , 2014 .

[19]  A. Davies,et al.  Graded photonic crystal terahertz quantum cascade lasers , 2010 .

[20]  S. Noda,et al.  Watt-class high-power, high-beam-quality photonic-crystal lasers , 2014, Nature Photonics.

[21]  Sahand Hormoz,et al.  Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K. , 2008, Optics express.

[22]  G. Gumbs,et al.  Dynamical maps, Cantor spectra, and localization for Fibonacci and related quasiperiodic lattices. , 1988, Physical Review Letters.

[23]  Kohmoto,et al.  Localization of optics: Quasiperiodic media. , 1987, Physical review letters.

[24]  A. Davies,et al.  Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures , 2012, Nature Communications.

[25]  David A. Ritchie,et al.  Quasi-periodic distributed feedback laser , 2010 .

[26]  Bahram Javidi,et al.  3D object scaling in integral imaging display by varying the spatial ray sampling rate. , 2005, Optics express.

[27]  A. Davies,et al.  THz quantum cascade lasers operating on the radiative modes of a 2D photonic crystal. , 2014, Optics letters.

[28]  I. Park,et al.  Terahertz pulse propagation in plastic photonic crystal fibers , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[29]  Goro Sasaki,et al.  Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure , 1999 .