Multipoint and Multi-Objective Aerodynamic Shape Optimization

A Newton‐Krylov algorithm is presented for the aerodynamic optimization of singleand multi-element airfoil configurations. The flow is governed by the compressible Navier‐Stokes equations in conjunction with a one-equation turbulence model. The preconditioned generalized minimum residual method is applied to solve the discreteadjoint equation, leading to a fast computation of accurate objective function gradients. Optimization constraints are enforced through a penalty formulation, and the resulting unconstrained problem is solved via a quasi-Newton method. Design examples include lift-enhancement and multi-point lift-constrained drag minimization problems. Furthermore, the new algorithm is used to compute a Pareto front for a multi-objective problem, and the results are validated using a genetic algorithm. Overall, the new algorithm provides an ecient and robust approach for addressing the issues of complex aerodynamic

[1]  R. M. Hicks,et al.  An assessment of airfoil design by numerical optimization , 1974 .

[2]  A. M. O. Smith,et al.  High-Lift Aerodynamics , 1975 .

[3]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[4]  T. Pulliam Efficient solution methods for the Navier-Stokes equations , 1986 .

[5]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[6]  Sinan Eyi,et al.  Transonic Airfoil Design by Constrained Optimization , 1991 .

[7]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[8]  D. W. Zingg,et al.  Compressible Navier-Stokes computations of multielement airfoil flows using multiblock grids , 1994 .

[9]  M. D. Salas,et al.  Airfoil Design and Optimization by the One-Shot Method , 1995 .

[10]  S. Obayashi,et al.  Aerodynamic optimization with evolutionary algorithms , 1996 .

[11]  K. D. Lee,et al.  High-Lift Design Optimization Using Navier-Stokes Equations , 1996 .

[12]  M. D. Gunzburger Introduction into mathematical aspects of flow control and optimization , 1997 .

[13]  Y. Saad,et al.  Experimental study of ILU preconditioners for indefinite matrices , 1997 .

[14]  M. J. Rimlinger,et al.  Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers , 1997 .

[15]  David W. Zingg,et al.  High-Lift Aerodynamic Computations with One- and Two-Equation Turbulence Models , 1997 .

[16]  J. Eric,et al.  Aerodynamic Design Optimization on Unstructured Meshes Using the Navier-Stokes Equations , 1998 .

[17]  J. Peraire,et al.  Constrained, multipoint shape optimisation for complex 3D configurations , 1998, The Aeronautical Journal (1968).

[18]  Mark Drela,et al.  Pros & Cons of Airfoil Optimization , 1998 .

[19]  David W. Zingg,et al.  Efficient Newton-Krylov Solver for Aerodynamic Computations , 1998 .

[20]  T. Rogalsky,et al.  Aerodynamic shape optimization of fan blades , 1998 .

[21]  R. Greenman Two-dimensional high-lift aerodynamic optimization using neural networks , 1998 .

[22]  E. Nielsen,et al.  Aerodynamic design sensitivities on an unstructured mesh using the Navier-Stokes equations and a discrete adjoint formulation , 1998 .

[23]  A. Jameson,et al.  Optimum Aerodynamic Design Using the Navier–Stokes Equations , 1997 .

[24]  M. J. Rimlinger,et al.  Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers , 1997 .

[25]  Juan J. Alonso,et al.  Aerodynamic shape optimization of supersonic aircraft configurations via an adjoint formulation on distributed memory parallel computers , 1996 .

[26]  B. I. Soemarwoto,et al.  Airfoil design and optimization methods: recent progress at NLR , 1999 .

[27]  Kaj Fagervik,et al.  Optimization of an , 1999 .

[28]  W. K. Anderson,et al.  Airfoil Design on Unstructured Grids for Turbulent Flows , 1999 .

[29]  J. Désidéri,et al.  Multi-Objective Optimization in CFD by Genetic Algorithms , 1999 .

[30]  W. K. Anderson,et al.  First-Order Model Management With Variable-Fidelity Physics Applied to Multi-Element Airfoil Optimization , 2000 .

[31]  Michael B. Giles,et al.  Analytic Adjoint Solutions for the Quasi-1D Euler Equations , 2000 .

[32]  Niles A. Pierce,et al.  An Introduction to the Adjoint Approach to Design , 2000 .

[33]  T. Pulliam,et al.  Aerodynamic Shape Optimization Using A Real-Number-Encoded Genetic Algorithm , 2001 .

[34]  Luc Huyse,et al.  Aerodynamic shape optimization of two-dimensional airfoils under uncertain conditions , 2001 .

[35]  Michael B. Giles,et al.  Analytic adjoint solutions for the quasi-one-dimensional Euler equations , 2001, Journal of Fluid Mechanics.

[36]  M. Giles,et al.  Adjoint Code Developments Using the Exact Discrete Approach , 2001 .

[37]  Oh-Hyun Rho,et al.  Sensitivity Analysis for the Navier-Stokes Equations with Two-Equation Turbulence Models , 2001 .

[38]  S. Obayashi,et al.  Aerodynamic Optimization of Supersonic Transport Wing Using Unstructured Adjoint Method , 2001 .

[39]  Juan J. Alonso,et al.  AIAA-2002-0261 An Adjoint Method for the Calculation of Remote Sensitivities in Supersonic Flow , 2002 .

[40]  Christopher L. Rumsey,et al.  Prediction of high lift: review of present CFD capability , 2002 .

[41]  D. Zingg,et al.  FROM ANALYSIS TO DESIGN OF HIGH-LIFT CONFIGURATIONS USING A NEWTON-KRYLOV ALGORITHM , 2002 .

[42]  Sharon L. Padula,et al.  Probabilistic approach to free-form airfoil shape optimization under uncertainty , 2002 .

[43]  W. K. Anderson,et al.  Recent improvements in aerodynamic design optimization on unstructured meshes , 2001 .

[44]  C. P. van Dam,et al.  The aerodynamic design of multi-element high-lift systems for transport airplanes , 2002 .

[45]  L. Huyse,et al.  Robust airfoil optimization to achieve drag reduction over a range of Mach numbers , 2002 .

[46]  Joaquim R. R. A. Martins,et al.  High-Fidelity Aerostructural Design Optimization of a Supersonic Business Jet , 2002 .

[47]  Kyriakos C. Giannakoglou,et al.  Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence , 2002 .

[48]  D. Zingg,et al.  Newton-Krylov Algorithm for Aerodynamic Design Using the Navier-Stokes Equations , 2002 .

[49]  A. Jameson,et al.  Design Optimization of High-Lift Configurations Using a Viscous Continuous Adjoint Method , 2002 .

[50]  Sharon L. Padula,et al.  Robust Airfoil Optimization in High Resolution Design Space , 2003 .

[51]  Marian Nemec,et al.  Optimization of High-Lift Configurations Using a Newton-Krylov Algorithm , 2003 .

[52]  Marian Nemec,et al.  Optimal Shape Design Of Aerodynamic Configurations: A Newton-Krylov Approach , 2003 .