Combining Derivations and Refutations for Cut-free Completeness in Bi-intuitionistic Logic

Bi-intuitionistic logic is the union of intuitionistic and dual intuitionistic logic, and was introduced by Rauszer as a Hilbert calculus with algebraic and Kripke semantics. But her subsequent ‘cut-free’ sequent calculus has recently been shown to fail cut-elimination. We present a new cut-free sequent calculus for bi-intuitionistic logic, and prove it sound and complete with respect to its Kripke semantics. Ensuring completeness is complicated by the interaction between intuitionistic implication and dual intuitionistic exclusion, similarly to future and past modalities in tense logic. Our calculus handles this interaction using derivations and refutations as first class citizens. We employ extended sequents which pass information from premises to conclusions using variables instantiated at the leaves of refutations, and rules which compose certain refutations and derivations to form derivations. Automated deduction using terminating backward search is also possible, although this is not our main purpose.

[1]  Dominique Larchey-Wendling,et al.  Combining Proof-Search and Counter-Model Construction for Deciding Gödel-Dummett Logic , 2002, CADE.

[2]  Roy Dyckhoff,et al.  Contraction-free sequent calculi for intuitionistic logic , 1992, Journal of Symbolic Logic.

[3]  Rajeev Goré,et al.  A Cut-Free Sequent Calculus for Bi-intuitionistic Logic , 2007, TABLEAUX.

[4]  D. Gabbay,et al.  Handbook of tableau methods , 1999 .

[5]  Jan Łukasiewicz Aristotle's Syllogistic From the Standpoint of Modern Formal Logic , 1957 .

[6]  Valentin Goranko,et al.  Refutation systems in modal logic , 1994, Stud Logica.

[7]  Rajeev Goré,et al.  Substructural Logics on Display , 1998, Log. J. IGPL.

[8]  V. Rich Personal communication , 1989, Nature.

[9]  A. Avron The method of hypersequents in the proof theory of propositional non-classical logics , 1996 .

[10]  Tristan Crolard A Formulae-as-Types Interpretation of Subtractive Logic , 2004, J. Log. Comput..

[11]  Frank Wolter,et al.  On Logics with Coimplication , 1998, J. Philos. Log..

[12]  Rudolf Fritsch,et al.  Proceedings of the 2nd Gauss Symposium, Conference A, Mathematics and theoretical physics : Munich, Germany, August 2-7, 1993 , 1995 .

[13]  C. Rauszer An algebraic and Kripke-style approach to a certain extension of intuitionistic logic , 1980 .

[14]  A. G. Dragálin Mathematical Intuitionism. Introduction to Proof Theory , 1988 .

[15]  Stefan Schwendimann,et al.  A New One-Pass Tableau Calculus for PLTL , 1998, TABLEAUX.

[16]  Ian Horrocks,et al.  Optimizing Description Logic Subsumption , 1999, J. Log. Comput..

[17]  Shôji Maehara,et al.  Eine Darstellung der Intuitionistischen Logik in der Klassischen , 1954, Nagoya Mathematical Journal.

[18]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[19]  Heinrich Zimmermann,et al.  Efficient Loop-Check for Backward Proof Search in Some Non-classical Propositional Logics , 1996, TABLEAUX.

[20]  Igor Urbas,et al.  Dual-Intuitionistic Logic , 1996, Notre Dame J. Formal Log..

[21]  Johannes Czermak,et al.  A remark on Gentzen's calculus of sequents , 1977, Notre Dame J. Formal Log..

[22]  Jian Pei,et al.  Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach , 2006, Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06).

[23]  I. Horrocks,et al.  A PSPACE-algorithm for deciding ALCNIR+-satisfiability , 1998 .

[24]  M. E. Szabo,et al.  The collected papers of Gerhard Gentzen , 1969 .

[25]  Tristan Crolard,et al.  Subtractive logic , 2001, Theor. Comput. Sci..

[26]  J. Davenport Editor , 1960 .

[27]  Frank Wolter,et al.  Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.

[28]  Kai Br Deep Sequent Systems for Modal Logic , 2006 .

[29]  Ian Horrocks,et al.  Computational modal logic , 2007, Handbook of Modal Logic.

[30]  Rajeev Goré,et al.  Tableau Methods for Modal and Temporal Logics , 1999 .

[31]  John W. Dawson,et al.  Ergebnisse eines Mathematischen Kolloquiums , 1998 .

[32]  Jacob M. Howe,et al.  Proof search issues in some non-classical logics , 1998 .

[33]  Cecylia Rauszer,et al.  A formalization of the propositional calculus of H-B logic , 1974 .

[34]  Vítězslav Švejdar,et al.  On sequent calculi for intuitionistic propositional logic , 2006 .

[35]  Roy Dyckho Loop � free construction of counter � models for intuitionistic propositional logic , 1995 .

[36]  Philotheus Boehner Review: Jan Lukasiewicz, Aristotle's Syllogistic from the Standpoint of Modern Formal Logic , 1952 .