Combining Derivations and Refutations for Cut-free Completeness in Bi-intuitionistic Logic
暂无分享,去创建一个
[1] Dominique Larchey-Wendling,et al. Combining Proof-Search and Counter-Model Construction for Deciding Gödel-Dummett Logic , 2002, CADE.
[2] Roy Dyckhoff,et al. Contraction-free sequent calculi for intuitionistic logic , 1992, Journal of Symbolic Logic.
[3] Rajeev Goré,et al. A Cut-Free Sequent Calculus for Bi-intuitionistic Logic , 2007, TABLEAUX.
[4] D. Gabbay,et al. Handbook of tableau methods , 1999 .
[5] Jan Łukasiewicz. Aristotle's Syllogistic From the Standpoint of Modern Formal Logic , 1957 .
[6] Valentin Goranko,et al. Refutation systems in modal logic , 1994, Stud Logica.
[7] Rajeev Goré,et al. Substructural Logics on Display , 1998, Log. J. IGPL.
[8] V. Rich. Personal communication , 1989, Nature.
[9] A. Avron. The method of hypersequents in the proof theory of propositional non-classical logics , 1996 .
[10] Tristan Crolard. A Formulae-as-Types Interpretation of Subtractive Logic , 2004, J. Log. Comput..
[11] Frank Wolter,et al. On Logics with Coimplication , 1998, J. Philos. Log..
[12] Rudolf Fritsch,et al. Proceedings of the 2nd Gauss Symposium, Conference A, Mathematics and theoretical physics : Munich, Germany, August 2-7, 1993 , 1995 .
[13] C. Rauszer. An algebraic and Kripke-style approach to a certain extension of intuitionistic logic , 1980 .
[14] A. G. Dragálin. Mathematical Intuitionism. Introduction to Proof Theory , 1988 .
[15] Stefan Schwendimann,et al. A New One-Pass Tableau Calculus for PLTL , 1998, TABLEAUX.
[16] Ian Horrocks,et al. Optimizing Description Logic Subsumption , 1999, J. Log. Comput..
[17] Shôji Maehara,et al. Eine Darstellung der Intuitionistischen Logik in der Klassischen , 1954, Nagoya Mathematical Journal.
[18] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[19] Heinrich Zimmermann,et al. Efficient Loop-Check for Backward Proof Search in Some Non-classical Propositional Logics , 1996, TABLEAUX.
[20] Igor Urbas,et al. Dual-Intuitionistic Logic , 1996, Notre Dame J. Formal Log..
[21] Johannes Czermak,et al. A remark on Gentzen's calculus of sequents , 1977, Notre Dame J. Formal Log..
[22] Jian Pei,et al. Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach , 2006, Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06).
[23] I. Horrocks,et al. A PSPACE-algorithm for deciding ALCNIR+-satisfiability , 1998 .
[24] M. E. Szabo,et al. The collected papers of Gerhard Gentzen , 1969 .
[25] Tristan Crolard,et al. Subtractive logic , 2001, Theor. Comput. Sci..
[26] J. Davenport. Editor , 1960 .
[27] Frank Wolter,et al. Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.
[28] Kai Br. Deep Sequent Systems for Modal Logic , 2006 .
[29] Ian Horrocks,et al. Computational modal logic , 2007, Handbook of Modal Logic.
[30] Rajeev Goré,et al. Tableau Methods for Modal and Temporal Logics , 1999 .
[31] John W. Dawson,et al. Ergebnisse eines Mathematischen Kolloquiums , 1998 .
[32] Jacob M. Howe,et al. Proof search issues in some non-classical logics , 1998 .
[33] Cecylia Rauszer,et al. A formalization of the propositional calculus of H-B logic , 1974 .
[34] Vítězslav Švejdar,et al. On sequent calculi for intuitionistic propositional logic , 2006 .
[35] Roy Dyckho. Loop � free construction of counter � models for intuitionistic propositional logic , 1995 .
[36] Philotheus Boehner. Review: Jan Lukasiewicz, Aristotle's Syllogistic from the Standpoint of Modern Formal Logic , 1952 .