Slc26a11, a chloride transporter, localizes with the vacuolar H(+)-ATPase of A-intercalated cells of the kidney.

[1]  B. Schwappach,et al.  Think Vesicular Chloride , 2010, Science.

[2]  S. Alper,et al.  Deletion of the Chloride Transporter Slc26a7 Causes Distal Renal Tubular Acidosis and Impairs Gastric Acid Secretion* , 2009, The Journal of Biological Chemistry.

[3]  F. Karet,et al.  Cellular physiology of the renal H+ATPase , 2009, Current opinion in nephrology and hypertension.

[4]  Dennis Brown,et al.  Regulation of the V-ATPase in kidney epithelial cells: dual role in acid–base homeostasis and vesicle trafficking , 2009, Journal of Experimental Biology.

[5]  M. Romero,et al.  Slc26a9—Anion Exchanger, Channel and Na+ Transporter , 2009, Journal of Membrane Biology.

[6]  L. M. Lessa,et al.  Physiological implications of the regulation of vacuolar H+-ATPase by chloride ions. , 2009, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[7]  S. Alper,et al.  Deletion of the chloride transporter Slc26a9 causes loss of tubulovesicles in parietal cells and impairs acid secretion in the stomach , 2008, Proceedings of the National Academy of Sciences.

[8]  Yanru Wang,et al.  Structure and regulation of the vacuolar ATPases. , 2008, Biochimica et biophysica acta.

[9]  D. Vandorpe,et al.  Species differences in Cl− affinity and in electrogenicity of SLC26A6‐mediated oxalate/Cl− exchange correlate with the distinct human and mouse susceptibilities to nephrolithiasis , 2008, The Journal of physiology.

[10]  J. Kere,et al.  Regulation of the basolateral chloride/base exchangers AE1 and SLC26A7 in the kidney collecting duct in potassium depletion. , 2007, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[11]  S. Muallem,et al.  SLC26A9 is a Cl− channel regulated by the WNK kinases , 2007, The Journal of physiology.

[12]  G. Malnic,et al.  Cl- and regulation of pH by MDCK-C11 cells. , 2007, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[13]  T. Jentsch Chloride and the endosomal–lysosomal pathway: emerging roles of CLC chloride transporters , 2007, The Journal of physiology.

[14]  D. Spyropoulos,et al.  slc26a3 (dra)-deficient Mice Display Chloride-losing Diarrhea, Enhanced Colonic Proliferation, and Distinct Up-regulation of Ion Transporters in the Colon* , 2006, Journal of Biological Chemistry.

[15]  D. Batlle,et al.  Kidney vacuolar H+ -ATPase: physiology and regulation. , 2006, Seminars in nephrology.

[16]  M. Soleimani,et al.  SLC26 chloride/base exchangers in the kidney in health and disease. , 2006, Seminars in nephrology.

[17]  Mike L Green,et al.  Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice. , 2006, American journal of physiology. Gastrointestinal and liver physiology.

[18]  A. Evan,et al.  Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6 , 2006, Nature Genetics.

[19]  M. Romero,et al.  Physiology of electrogenic SLC26 paralogues. , 2006, Novartis Foundation symposium.

[20]  J. Lorenz,et al.  Renal and intestinal transport defects in Slc26a6-null mice. , 2005, American journal of physiology. Cell physiology.

[21]  S. Muallem,et al.  SLC26A7 Is a Cl– Channel Regulated by Intracellular pH* , 2005, Journal of Biological Chemistry.

[22]  G. Gerencser,et al.  Existence and nature of the chloride pump. , 2003, Biochimica et biophysica acta.

[23]  E. Green,et al.  Deoxycorticosterone Upregulates PDS (Slc26a4) in Mouse Kidney: Role of Pendrin in Mineralocorticoid-Induced Hypertension , 2003, Hypertension.

[24]  F. Amalric,et al.  Molecular and functional characterization of SLC26A11, a sodium‐independent sulfate transporter from high endothelial venules , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[25]  J. Kere,et al.  Identification of a basolateral Cl-/HCO3- exchanger specific to gastric parietal cells. , 2003, American journal of physiology. Gastrointestinal and liver physiology.

[26]  M. Romero,et al.  Molecular characterization of the murine Slc26a6 anion exchanger: functional comparison with Slc26a1. , 2002, American journal of physiology. Renal physiology.

[27]  W. Boron,et al.  Specificity of Anion Exchange Mediated by Mouse Slc26a6* , 2002, The Journal of Biological Chemistry.

[28]  J. Kere,et al.  Functional Characterization of Three Novel Tissue-specific Anion Exchangers SLC26A7, -A8, and -A9* , 2002, The Journal of Biological Chemistry.

[29]  O. Platoshyn,et al.  Activation of K+ channels induces apoptosis in vascular smooth muscle cells. , 2001, American journal of physiology. Cell physiology.

[30]  P. Kopp,et al.  Pendrin: an apical Cl-/OH-/HCO3- exchanger in the kidney cortex. , 2001, American journal of physiology. Renal physiology.

[31]  J. Kere,et al.  Mapping of five new putative anion transporter genes in human and characterization of SLC26A6, a candidate gene for pancreatic anion exchanger. , 2000, Genomics.

[32]  J. Geibel,et al.  Cell pH and H+ Secretion by S3 Segment of Mammalian Kidney: Role of H+-ATPase and Cl− , 2000, The Journal of Membrane Biology.

[33]  Jing Zheng,et al.  Prestin is the motor protein of cochlear outer hair cells , 2000, Nature.

[34]  Keerang Park,et al.  Mouse Down-regulated in Adenoma (DRA) Is an Intestinal Cl−/HCO3 − Exchanger and Is Up-regulated in Colon of Mice Lacking the NHE3 Na+/H+Exchanger* , 1999, The Journal of Biological Chemistry.

[35]  M. Soleimani,et al.  Activation of H+-ATPase by hypotonicity: a novel regulatory mechanism for H+ secretion in IMCD cells. , 1998, American journal of physiology. Renal physiology.

[36]  F. Lang,et al.  Angiotensin II stimulates vesicular H+-ATPase in rat proximal tubular cells. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[37]  V. Sheffield,et al.  Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS) , 1997, Nature Genetics.

[38]  G. Shull,et al.  Cloning and Functional Expression of a Human Kidney Na+:HCO3 −Cotransporter* , 1997, The Journal of Biological Chemistry.

[39]  G. Malnic,et al.  Mechanisms and regulation of H+ transport in distal tubule epithelial cells. , 1997, Wiener klinische Wochenschrift.

[40]  J. R. Bosqueiro,et al.  Role of Cl− in Electrogenic H+ Secretion by Cortical Distal Tubule , 1997, The Journal of Membrane Biology.

[41]  Christer Holmberg,et al.  Mutations of the Down–regulated in adenoma (DRA) gene cause congenital chloride diarrhoea , 1996, Nature Genetics.

[42]  Eric S. Lander,et al.  The diastrophic dysplasia gene encodes a novel sulfate transporter: Positional cloning by fine-structure linkage disequilibrium mapping , 1994, Cell.

[43]  P. Meier,et al.  Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. , 1994, The Journal of biological chemistry.

[44]  M. Soleimani,et al.  Presence of chloride-formate exchange in vascular smooth muscle and cardiac cells. , 1994, Circulation research.

[45]  A. Mooradian,et al.  Identification of proton-translocating adenosine triphosphatases in rat cerebral microvessels , 1993, Brain Research.

[46]  Y. Anraku,et al.  Chloride transport of yeast vacuolar membrane vesicles: a study of in vitro vacuolar acidification. , 1992, Biochimica et biophysica acta.

[47]  P. Hemken,et al.  Expression and distribution of renal vacuolar proton-translocating adenosine triphosphatase in response to chronic acid and alkali loads in the rat. , 1991, The Journal of clinical investigation.

[48]  H. Lodish,et al.  Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+-ATPase. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[49]  H. Arai,et al.  Interaction of anions and ATP with the coated vesicle proton pump. , 1989, Biochemistry.

[50]  N. Madias,et al.  Cl(-)-dependent ATP-driven H+ transport in rabbit renal cortical endosomes. , 1988, The American journal of physiology.

[51]  G. Schwartz,et al.  Plasticity of functional epithelial polarity , 1985, Nature.

[52]  X. Xie,et al.  Determinants of clathrin-coated vesicle acidification. , 1983, The Journal of biological chemistry.

[53]  J. Glickman,et al.  Golgi membranes contain an electrogenic H+ pump in parallel to a chloride conductance , 1983, The Journal of cell biology.