Addressing endogeneity when estimating stochastic ray production frontiers: a Bayesian approach

We propose a Bayesian approach for inference in the stochastic ray production frontier (SRPF), which can model multiple-input–multiple-output production technologies even in case of zero output quantities, i.e., if some outputs are not produced by some of the firms. However, the econometric estimation of the SRPF—as the estimation of distance functions in general—is susceptible to endogeneity problems. To address these problems, we apply a profit-maximizing framework to derive a system of equations after incorporating technical inefficiency. As the latter enters non-trivially into the system of equations and as the Jacobian is highly complicated, we use Monte Carlo methods of inference. Using US banking data to illustrate our innovative approach, we also address the problems of missing prices and the dependence on the ordering of the outputs via model averaging.

[1]  Rafael A. Cuesta,et al.  Mergers and technical efficiency in Spanish savings banks: A stochastic distance function approach , 2002 .

[2]  S. Kumbhakar,et al.  Price Distortions and Resource-Use Efficiency in Indian Agriculture: A Restricted Profit Function Approach , 1992 .

[3]  Timothy Coelli,et al.  A Bayesian Approach to Imposing Curvature on Distance Functions , 2005 .

[4]  G. Battese,et al.  Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India , 1992 .

[5]  D. Aigner,et al.  P. Schmidt, 1977,?Formulation and estimation of stochastic frontier production function models,? , 1977 .

[6]  C. Lovell,et al.  On the estimation of technical inefficiency in the stochastic frontier production function model , 1982 .

[7]  Lawrence B. Pulley,et al.  Banks' Responses to Deregulation: Profits, Technology, and Efficiency , 1997 .

[8]  W. Meeusen,et al.  Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error , 1977 .

[9]  M. Tambour,et al.  Internal markets and health care efficiency: a multiple-output stochastic frontier analysis. , 1999, Health economics.

[10]  Uwe Jensen,et al.  A Monte Carlo study on multiple output stochastic frontiers: a comparison of two approaches , 2014, Journal of Productivity Analysis.

[11]  S. Kumbhakar,et al.  Estimation of Profit Functions When Profit is Not Maximum , 2001 .

[12]  D. Primont,et al.  The opportunity cost of duality , 1996 .

[13]  R. Färe Derivation of Shadow Prices for Undesirable Outputs: A Distance Function Approach , 1993 .

[14]  Efthymios G. Tsionas,et al.  Stochastic Frontier Models with Random Coefficients , 2002 .

[15]  Jalal D. Akhavein,et al.  A General Method of Deriving the Inefficiencies of Banks from a Profit Function , 1994 .

[16]  Loretta J. Mester,et al.  Inside the Black Box: What Explains Differences in the Efficiencies of Financial Institutions? , 1997 .

[17]  M. Steel,et al.  Posterior analysis of stochastic frontier models using Gibbs sampling , 1994 .

[18]  Mickael Löthgren,et al.  Specification and estimation of stochastic multiple-output production and technical inefficiency , 2000 .

[19]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[20]  Mickael Löthgren,et al.  Generalized Stochastic Frontier Production Models , 1997 .

[21]  Robin C. Sickles,et al.  Specification of Distance Functions Using Semi- and Nonparametric Methods with an Application to the Dynamic Performance of Eastern and Western European Air Carriers , 2002 .

[22]  A. Heshmati,et al.  Efficiency Measurement in Swedish Dairy Farms: An Application of Rotating Panel Data, 1976–88 , 1995 .

[23]  Sergio Perelman,et al.  A comparison of parametric and non-parametric distance functions: With application to European railways , 1999, Eur. J. Oper. Res..

[24]  Efthymios G. Tsionas,et al.  Inference in dynamic stochastic frontier models , 2006 .

[25]  P. Schmidt,et al.  Production Frontiers and Panel Data , 1984 .

[26]  Aditi Bhattacharyya,et al.  Financial Reforms and Technical Efficiency in Indian Commercial Banking: A Generalized Stochastic Frontier Analysis , 2013 .

[27]  D. Primont,et al.  Multi-Output Production and Duality: Theory and Applications , 1994 .

[28]  Shawna Grosskopf,et al.  Budget-Constrained Frontier Measures of Fiscal Equality and Efficiency in Schooling , 1997, Review of Economics and Statistics.

[29]  Tai-Hsin Huang,et al.  Comparisons of Economic Inefficiency Between Output and Input Measures of Technical Inefficiency Using the Fourier Flexible Cost Function , 2004 .

[30]  Subal C. Kumbhakar,et al.  Stochastic frontier analysis , 2000 .

[31]  M. Steel,et al.  Stochastic frontier models: a bayesian perspective , 1994 .

[32]  A. Barten Maximum likelihood estimation of a complete system of demand equations , 1969 .

[33]  A. Gelfand,et al.  Bayesian Model Choice: Asymptotics and Exact Calculations , 1994 .

[34]  M. Rosko Cost efficiency of US hospitals: a stochastic frontier approach. , 2001, Health economics.

[35]  Rolf Färe,et al.  Cost and revenue constrained production , 1994 .

[36]  W. Greene Fixed and Random Effects in Stochastic Frontier Models , 2002 .

[37]  S. Kumbhakar,et al.  Efficiency measurement using a latent class stochastic frontier model , 2004 .

[38]  G. Battese,et al.  ESTIMATION OF A PRODUCTION FRONTIER MODEL: WITH APPLICATION TO THE PASTORAL ZONE OF EASTERN AUSTRALIA , 1977 .

[39]  Lung-fei Lee,et al.  The measurement and sources of technical inefficiency in the Indonesian weaving industry , 1981 .

[40]  R. Shepherd Theory of cost and production functions , 1970 .

[41]  Specification and estimation of stochastic multiple-output production and technical inefficiency , 2000 .

[42]  J. Quiggin,et al.  The Use Of Cross-Sectional Estimates Of Profit Functions For Tests Of Relative Efficiency: A Critical Review , 1984 .

[43]  Gary Koop,et al.  Bayesian efficiency analysis through individual effects: Hospital cost frontiers , 1997 .

[44]  Dek Terrell,et al.  Incorporating monotonicity and concavity conditions in flexible functional forms , 1996 .

[45]  Harry W. Nelson,et al.  Sawmill production in the interior of British Columbia: A stochastic ray frontier approach , 2010 .

[46]  Scott E. Atkinson,et al.  Bayesian measurement of productivity and efficiency in the presence of undesirable outputs: crediting electric utilities for reducing air pollution , 2005 .

[47]  Efthymios G. Tsionas,et al.  Full Likelihood Inference in Normal-Gamma Stochastic Frontier Models , 2000 .

[48]  Arne Henningsen,et al.  New insights into the stochastic ray production frontier , 2017 .

[49]  M. Steel,et al.  Bayesian Efficiency Analysis With a Flexible Form: The AIM Cost Function , 1994 .

[50]  Gary D. Ferrier,et al.  Measuring cost efficiency in banking: Econometric and linear programming evidence , 1990 .

[51]  Emir Malikov,et al.  A Cost System Approach to the Stochastic Directional Technology Distance Function with Undesirable Outputs: The Case of U.S. Banks in 2001-2010 , 2015 .

[52]  C. Lovell,et al.  RESOURCES AND FUNCTIONINGS: A NEW VIEW OF INEQUALITY IN AUSTRALIA , 1994 .

[53]  A. Henningsen,et al.  Imposing regional monotonicity on translog stochastic production frontiers with a simple three-step procedure , 2009 .

[54]  Sergio Perelman,et al.  Technical efficiency of European railways: a distance function approach , 2000 .

[55]  S. Kumbhakar Production frontiers, panel data, and time-varying technical inefficiency , 1990 .

[56]  A. Vivas Profit efficiency for Spanish savings banks , 1997 .

[57]  Thomas Glauben,et al.  Decomposition of Productivity Growth Using Distance Functions: The Case of Dairy Farms in Three European Countries , 2002 .

[58]  M. Farsi,et al.  An Empirical Analysis of Cost Efficiency in Non-Profit and Public Nursing Homes , 2004 .

[59]  E. Tsionas,et al.  Estimation of Input Distance Functions: A System Approach , 2015 .