α-Synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding

Two membrane curvature–sensing molecules with opposite chemistries are targeted to distinct vesicle classes through direct interaction with different lipid environments.

[1]  Bruno Antonny,et al.  Mechanisms of membrane curvature sensing. , 2011, Annual review of biochemistry.

[2]  P. Brennwald,et al.  Yeast homologues of lethal giant larvae and type V myosin cooperate in the regulation of Rab-dependent vesicle clustering and polarized exocytosis , 2011, Molecular biology of the cell.

[3]  C. Burd,et al.  Aggregation of α-Synuclein in S. cerevisiae is Associated with Defects in Endosomal Trafficking and Phospholipid Biosynthesis , 2011, Journal of Molecular Neuroscience.

[4]  S. Lindquist,et al.  α-Synuclein: membrane interactions and toxicity in Parkinson's disease. , 2010, Annual review of cell and developmental biology.

[5]  E. Rhoades,et al.  Effects of curvature and composition on α-synuclein binding to lipid vesicles. , 2010, Biophysical journal.

[6]  T. Südhof,et al.  α-Synuclein Promotes SNARE-Complex Assembly in Vivo and in Vitro , 2010, Science.

[7]  S. Munro,et al.  A Comprehensive Comparison of Transmembrane Domains Reveals Organelle-Specific Properties , 2010, Cell.

[8]  M. Hetzer,et al.  Cell Cycle-Dependent Differences in Nuclear Pore Complex Assembly in Metazoa , 2010, Cell.

[9]  J. Hay,et al.  α-Synuclein Delays Endoplasmic Reticulum (ER)-to-Golgi Transport in Mammalian Cells by Antagonizing ER/Golgi SNAREs , 2010, Molecular biology of the cell.

[10]  G. Drin,et al.  Amphipathic helices and membrane curvature , 2010, FEBS letters.

[11]  P. Novick,et al.  Establishing a Role for the GTPase Ypt1p at the Late Golgi , 2010, Traffic.

[12]  V. Bankaitis,et al.  The Sec14 superfamily and mechanisms for crosstalk between lipid metabolism and lipid signaling. , 2010, Trends in biochemical sciences.

[13]  G. Oster,et al.  Mechanochemical crosstalk during endocytic vesicle formation. , 2010, Current opinion in cell biology.

[14]  R. Nicoll,et al.  Increased Expression of α-Synuclein Reduces Neurotransmitter Release by Inhibiting Synaptic Vesicle Reclustering after Endocytosis , 2010, Neuron.

[15]  N. Hatzakis,et al.  How curved membranes recruit amphipathic helices and protein anchoring motifs. , 2009, Nature chemical biology.

[16]  M. Bornens,et al.  Golgi localisation of GMAP210 requires two distinct cis-membrane binding mechanisms , 2009, BMC Biology.

[17]  Beverly Wendland,et al.  Regulators of yeast endocytosis identified by systematic quantitative analysis , 2009, The Journal of cell biology.

[18]  Christer S. Ejsing,et al.  Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network , 2009, The Journal of cell biology.

[19]  P. Camilli,et al.  The BAR Domain Superfamily: Membrane-Molding Macromolecules , 2009, Cell.

[20]  Christer S. Ejsing,et al.  Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry , 2009, Proceedings of the National Academy of Sciences.

[21]  D. Selkoe,et al.  α‐Synuclein and Polyunsaturated Fatty Acids Promote Clathrin‐Mediated Endocytosis and Synaptic Vesicle Recycling , 2009, Traffic.

[22]  H. Riezman,et al.  Concentration of GPI‐Anchored Proteins upon ER Exit in Yeast , 2009, Traffic.

[23]  T. Südhof,et al.  Membrane Fusion: Grappling with SNARE and SM Proteins , 2009, Science.

[24]  C. L. Jackson,et al.  A COPI coat subunit interacts directly with an early‐Golgi localized Arf exchange factor , 2009, EMBO reports.

[25]  Ralf Langen,et al.  Structure of membrane-bound α-synuclein from site-directed spin labeling and computational refinement , 2008, Proceedings of the National Academy of Sciences.

[26]  Bruno Antonny,et al.  Asymmetric Tethering of Flat and Curved Lipid Membranes by a Golgin , 2008, Science.

[27]  G. Meer,et al.  Membrane lipids: where they are and how they behave , 2008, Nature Reviews Molecular Cell Biology.

[28]  Tony Yeung,et al.  Membrane Phosphatidylserine Regulates Surface Charge and Protein Localization , 2008, Science.

[29]  S. Lindquist,et al.  The Parkinson's disease protein α-synuclein disrupts cellular Rab homeostasis , 2008, Proceedings of the National Academy of Sciences.

[30]  J. Trojanowski,et al.  Alpha-synuclein-induced aggregation of cytoplasmic vesicles in Saccharomyces cerevisiae. , 2007, Molecular biology of the cell.

[31]  S. Lindquist,et al.  The Parkinson's disease protein alpha-synuclein disrupts cellular Rab homeostasis. , 2008, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Travis L. Rice-Stitt,et al.  In Vitro Fusion Catalyzed by the Sporulation‐Specific t‐SNARE Light‐Chain Spo20p is Stimulated by Phosphatidic Acid , 2007, Traffic.

[33]  G. Daum,et al.  Organelle association visualized by three-dimensional ultrastructural imaging of the yeast cell. , 2007, FEMS yeast research.

[34]  M. Kaksonen,et al.  PtdIns(4,5)P2 turnover is required for multiple stages during clathrin- and actin-dependent endocytic internalization , 2007, The Journal of cell biology.

[35]  G. Drin,et al.  Two lipid-packing sensor motifs contribute to the sensitivity of ArfGAP1 to membrane curvature. , 2007, Biochemistry.

[36]  G. Drin,et al.  A general amphipathic α-helical motif for sensing membrane curvature , 2007, Nature Structural &Molecular Biology.

[37]  G. Drin,et al.  A general amphipathic alpha-helical motif for sensing membrane curvature. , 2007, Nature structural & molecular biology.

[38]  T. Rapoport,et al.  A Class of Membrane Proteins Shaping the Tubular Endoplasmic Reticulum , 2007, Cell.

[39]  R. Cornell,et al.  Amphipathic helices as mediators of the membrane interaction of amphitropic proteins, and as modulators of bilayer physical properties. , 2006, Current protein & peptide science.

[40]  Leonidas Stefanis,et al.  α-Synuclein Overexpression in PC12 and Chromaffin Cells Impairs Catecholamine Release by Interfering with a Late Step in Exocytosis , 2006, The Journal of Neuroscience.

[41]  Reinhard Jahn,et al.  SNAREs — engines for membrane fusion , 2006, Nature Reviews Molecular Cell Biology.

[42]  N. Ktistakis,et al.  Phosphatidic acid- and phosphatidylserine-binding proteins. , 2006, Biochimica et biophysica acta.

[43]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[44]  Arthur E Johnson,et al.  Fluorescence Approaches for Determining Protein Conformations, Interactions and Mechanisms at Membranes , 2005, Traffic.

[45]  G. Drin,et al.  ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif , 2005, The EMBO journal.

[46]  R. Schekman,et al.  Bi-directional protein transport between the ER and Golgi. , 2004, Annual review of cell and developmental biology.

[47]  A. Neiman,et al.  Positive and negative regulation of a SNARE protein by control of intracellular localization. , 2004, Molecular biology of the cell.

[48]  Yuichiro Maéda,et al.  Capping protein binding to actin in yeast , 2004, The Journal of cell biology.

[49]  J. Bonifacino,et al.  The Mechanisms of Vesicle Budding and Fusion , 2004, Cell.

[50]  S. Lindquist,et al.  Yeast Cells Provide Insight into Alpha-Synuclein Biology and Pathobiology , 2003, Science.

[51]  David G. Drubin,et al.  A Pathway for Association of Receptors, Adaptors, and Actin during Endocytic Internalization , 2003, Cell.

[52]  Akihiko Nakano,et al.  Oligomerization of a cargo receptor directs protein sorting into COPII-coated transport vesicles. , 2003, Molecular biology of the cell.

[53]  Thorsten Lang,et al.  Membrane fusion. , 2002, Current opinion in cell biology.

[54]  Ian G. Mills,et al.  Curvature of clathrin-coated pits driven by epsin , 2002, Nature.

[55]  R. Duden,et al.  ARF-GAP–mediated interaction between the ER-Golgi v-SNAREs and the COPI coat , 2002, The Journal of cell biology.

[56]  Kim Nasmyth,et al.  Molecular architecture of SMC proteins and the yeast cohesin complex. , 2002, Molecular cell.

[57]  Christian Haass,et al.  Subcellular Localization of Wild-Type and Parkinson's Disease-Associated Mutant α-Synuclein in Human and Transgenic Mouse Brain , 2000, The Journal of Neuroscience.

[58]  R. Leventis,et al.  Mutational and biochemical analysis of plasma membrane targeting mediated by the farnesylated, polybasic carboxy terminus of K-ras4B. , 2000, Biochemistry.

[59]  R. Schneiter,et al.  Electrospray Ionization Tandem Mass Spectrometry (Esi-Ms/Ms) Analysis of the Lipid Molecular Species Composition of Yeast Subcellular Membranes Reveals Acyl Chain-Based Sorting/Remodeling of Distinct Molecular Species En Route to the Plasma Membrane , 1999, The Journal of cell biology.

[60]  H. Pelham,et al.  The dynamics of golgi protein traffic visualized in living yeast cells. , 1998, Molecular biology of the cell.

[61]  P. Philippsen,et al.  Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae , 1998, Yeast.

[62]  A. Jonas,et al.  Stabilization of α-Synuclein Secondary Structure upon Binding to Synthetic Membranes* , 1998, The Journal of Biological Chemistry.

[63]  G. Bellí,et al.  An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast. , 1998, Nucleic acids research.

[64]  S Falkow,et al.  Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. , 1997, Microbiology.

[65]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[66]  S. Emr,et al.  A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast , 1995, The Journal of cell biology.

[67]  S. Kohlwein,et al.  Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae , 1991, Journal of bacteriology.

[68]  F. Sherman Getting started with yeast. , 1991, Methods in enzymology.