Estimation of snow water equivalence using SIR-C/X-SAR. II. Inferring snow depth and particle size

For pt.I see ibid., vol.38, no.6, p.2465-74 (2000). The relationship between snow water equivalence (SWE) and SAR backscattering coefficients at C- and X-band (5.5 and 9.6 GHz) can be either positive or negative. Therefore, discovery of the relationship with an empirical approach is unrealistic. Instead, the authors estimate snow depth and particle size using SIR-C/X-SAR imagery from a physically-based first order backscattering model through analyses of the importance of each scattering term and its sensitivity to snow properties. Using numerically simulated backscattering values, the authors develop semi-empirical models for characterizing the snow-ground interaction terms, the relationships between the ground surface backscattering components, and the snowpack extinction properties at C-band and X-band. With these relationships, snow depth and optical equivalent grain size can be estimated from SIR-C/X-SAR measurements. Validation using three SIR-C/X-SAR images shows that the algorithm performs usefully for incidence angles greater than 300, with root mean square errors (RMSEs) of 34 cm and 0.27 mm for estimating snow depth and ice optical equivalent particle radius, respectively.

[1]  Richard K. Moore,et al.  Radar remote sensing and surface scattering and emission theory , 1986 .

[2]  Manfred Zink,et al.  X-SAR radiometric calibration and data quality , 1995, IEEE Trans. Geosci. Remote. Sens..

[3]  Fawwaz T. Ulaby,et al.  The active and passive microwave response to snow parameters: 2. Water equivalent of dry snow , 1980 .

[4]  Jiancheng Shi,et al.  Stereological determination of dry-snow parameters for discrete-scatterer microwave modeling , 1993, Annals of Glaciology.

[5]  Kamal Sarabandi,et al.  Radar measurements of snow: experiment and analysis , 1998, IEEE Trans. Geosci. Remote. Sens..

[6]  C. Mätzler,et al.  Possibilities and Limits of Synthetic Aperture Radar for Snow and Glacier Surveying , 1987, Annals of Glaciology.

[7]  Jiancheng Shi,et al.  Inferring snow wetness using C-band data from SIR-C's polarimetric synthetic aperture radar , 1995, IEEE Trans. Geosci. Remote. Sens..

[8]  Kamal Sarabandi,et al.  An empirical model and an inversion technique for radar scattering from bare soil surfaces , 1992, IEEE Trans. Geosci. Remote. Sens..

[9]  J. Kong,et al.  Theory of microwave remote sensing , 1985 .

[10]  Jiancheng Shi,et al.  Electromagnetic scattering calculated from pair distribution functions retrieved from planar snow sections , 1997, IEEE Trans. Geosci. Remote. Sens..

[11]  Kamal Sarabandi,et al.  SIR-C data quality and calibration results , 1995, IEEE Trans. Geosci. Remote. Sens..

[12]  Adrian K. Fung,et al.  Backscattering from a randomly rough dielectric surface , 1992, IEEE Trans. Geosci. Remote. Sens..

[13]  Diane L. Evans,et al.  The shuttle imaging radar‐C and X‐SAR mission , 1993 .

[14]  Leung Tsang,et al.  Pair distribution functions and attenuation rates for stickly particles in dense media , 1994 .

[15]  Diane L. Evans,et al.  Overview of results of Spaceborne Imaging Radar-C, X-Band Synthetic Aperture Radar (SIR-C/X-SAR) , 1995, IEEE Trans. Geosci. Remote. Sens..

[16]  Jean-Pierre Fortin,et al.  The potential of times series of C-Band SAR data to monitor dry and shallow snow cover , 1998, IEEE Trans. Geosci. Remote. Sens..

[17]  Jiancheng Shi,et al.  Mapping seasonal snow with SIR-C/X-SAR in mountainous areas , 1997 .

[18]  Christian Mätzler,et al.  Applications of the interaction of microwaves with the natural snow cover , 1987 .

[19]  Jiancheng Shi,et al.  Estimation of snow water equivalence using SIR-C/X-SAR. I. Inferring snow density and subsurface properties , 2000, IEEE Trans. Geosci. Remote. Sens..

[20]  A. Fung Microwave Scattering and Emission Models and their Applications , 1994 .

[21]  F. Ulaby,et al.  Radar polarimetry for geoscience applications , 1990 .