On Error Analysis for the 3D Navier-Stokes Equations in Velocity-Vorticity-Helicity Form

We present a rigorous numerical analysis and computational tests for the Galerkin finite element discretization of the velocity-vorticity-helicity formulation of the equilibrium Navier-Stokes equations (NSEs). This formulation, recently derived by the authors, is the first NSE formulation that directly solves for helicity and the first velocity-vorticity formulation to naturally enforce incompressibility of the vorticity, and preliminary computations confirm its potential. We present a numerical scheme; prove stability, existence of solutions, uniqueness under a small data condition, and convergence; and provide numerical experiments to confirm the theory and illustrate the effectiveness of the scheme on a benchmark problem.

[1]  L. R. Scott,et al.  A quasi-local interpolation operator¶preserving the discrete divergence , 2003 .

[2]  B. Nicolaenko,et al.  On the helicity in 3D‐periodic Navier–Stokes equations I: the non‐statistical case , 2007 .

[3]  M. Lesieur,et al.  Influence of helicity on the evolution of isotropic turbulence at high Reynolds number , 1977, Journal of Fluid Mechanics.

[4]  M. Olshanskii A low order Galerkin finite element method for the Navier–Stokes equations of steady incompressible flow: a stabilization issue and iterative methods , 2002 .

[5]  Carsten Carstensen,et al.  Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.

[6]  William Layton,et al.  Introduction to the Numerical Analysis of Incompressible Viscous Flows , 2008 .

[8]  L. Berselli,et al.  On the regularity of the solutions to the 3D Navier–Stokes equations: a remark on the role of the helicity , 2009 .

[9]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[10]  George Em Karniadakis,et al.  A Penalty Method for the Vorticity-Velocity Formulation , 1999 .

[11]  Monique Dauge,et al.  Stationary Stokes and Navier-Stokes systems on two-or three-dimensional domains with corners , 1989 .

[12]  H. K. Moffatt,et al.  Helicity in Laminar and Turbulent Flow , 1992 .

[13]  Los Alamos National Laboratory,et al.  The joint cascade of energy and helicity in three-dimensional turbulence , 2002, nlin/0206030.

[14]  Maxim A. Olshanskii,et al.  Velocity-vorticity-helicity formulation and a solver for the Navier-Stokes equations , 2010, J. Comput. Phys..

[15]  C. Davies,et al.  A novel velocity-vorticity formulation of the Navier-Stokes equations with applications to boundary layer disturbance evolution , 2001 .

[16]  Maxim A. Olshanskii,et al.  On the accuracy of the rotation form in simulations of the Navier-Stokes equations , 2009, J. Comput. Phys..

[17]  Volker John,et al.  Slip With Friction and Penetration With Resistance Boundary Conditions for the Navier-Stokes Equatio , 2002 .

[18]  Jiezhi Wu,et al.  Effective Vorticity-Velocity Formulations for Three-Dimensional Incompressible Viscous Flows , 1995 .

[19]  D. L. Young,et al.  An accurate numerical solution algorithm for 3D velocity–vorticity Navier–Stokes equations by the DQ method , 2005 .

[20]  Thomas B. Gatski,et al.  Review of incompressible fluid flow computations using the vorticity-velocity formulation , 1991 .

[21]  Pavel B. Bochev,et al.  Constrained interpolation (remap) of divergence-free fields , 2005 .

[22]  H. Fasel,et al.  A Compact-Difference Scheme for the Navier—Stokes Equations in Vorticity—Velocity Formulation , 2000 .

[23]  B. Nicolaenko,et al.  On the Helicity in 3D-Periodic Navier–Stokes Equations II: The Statistical Case , 2009 .

[24]  G. Eyink,et al.  Subgrid-scale modeling of helicity and energy dissipation in helical turbulence. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Maxim A. Olshanskii,et al.  Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations , 2009 .

[26]  L. R. Scott,et al.  Simultaneous approximation in scales of Banach spaces , 1978 .

[27]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[28]  A. J. Baker,et al.  A 3D incompressible Navier–Stokes velocity–vorticity weak form finite element algorithm , 2002 .