Linearly implicit quantization-based integration methods for stiff ordinary differential equations

Abstract In this paper, new integration methods for stiff ordinary differential equations (ODEs) are developed. Following the idea of quantization-based integration (QBI), i.e., replacing the time discretization by state quantization, the proposed algorithms generalize the idea of linearly implicit algorithms. Also, the implementation of the new algorithms in a DEVS simulation tool is discussed. The efficiency of these new methods is verified by comparing their performance in the simulation of two benchmark problems with that of other numerical stiff ODE solvers. In particular, the advantages of these new algorithms for the simulation of electronic circuits are demonstrated.

[1]  Ernesto Kofman,et al.  Linearly implicit discrete event methods for stiff ODE's. , 2009 .

[2]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[3]  François E. Cellier,et al.  Quantised State System Simulation in Dymola/Modelica using the DEVS Formalism , 2006 .

[4]  Hans Olsson,et al.  Dymola for Multi-Engineering Modeling and Simulation , 2002 .

[5]  François E. Cellier,et al.  Quantization-based new integration methods for stiff ordinary differential equations , 2012, Simul..

[6]  Gabriel A. Wainer,et al.  M/CD++: modeling continuous systems using Modelica and DEVS , 2005, 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems.

[7]  François E. Cellier,et al.  Quantization-Based New Integration Methods for Stiff ODEs. , 2012 .

[8]  Federico Bergero,et al.  PowerDEVS: a tool for hybrid system modeling and real-time simulation , 2011, Simul..

[9]  Ernesto Kofman,et al.  A Second-Order Approximation for DEVS Simulation of Continuous Systems , 2002, Simul..

[10]  A. Kværnø,et al.  Norges Teknisk-naturvitenskapelige Universitet Singly Diagonally Implicit Runge-kutta Methods with an Explicit First Stage Singly Diagonally Implicit Runge-kutta Methods with an Explicit First Stage , 2022 .

[11]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[12]  Ernesto Kofman,et al.  Quantized-state systems: a DEVS Approach for continuous system simulation , 2001 .

[13]  Mamadou Kaba Traoré,et al.  VLE: a multimodeling and simulation environment , 2007, SCSC.

[14]  Bernard P. Zeigler,et al.  Theory of Quantized Systems: Devs Simulation of Perceiving Agents , 2000, Cybern. Syst..

[15]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[16]  Ernesto Kofman,et al.  A Third Order Discrete Event Simulation Method for Continuous System Simulation , 2006 .

[17]  Michele Amoretti,et al.  Simulation Modelling Practice and Theory , 2015 .

[18]  David J. Murray-Smith,et al.  Continuous System Simulation , 1994 .

[19]  Bernard P. Zeigler,et al.  DEVS representation of dynamical systems: event-based intelligent control , 1989, Proc. IEEE.

[20]  Willem Hundsdorfer,et al.  A multirate time stepping strategy for stiff ordinary differential equations , 2007 .

[21]  Ernesto Kofman,et al.  Relative Error Control in Quantization Based Integration , 2009 .

[22]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[23]  Ernesto Kofman,et al.  Discrete Event Simulation of Hybrid Systems , 2004, SIAM J. Sci. Comput..

[24]  Ernesto Kofman,et al.  A THIRD ORDER DISCRETE EVENT METHOD FOR CONTINUOUS SYSTEM SIMULATION Part II: Applications , 2006 .

[25]  Francisco Esquembre,et al.  Easy Java Simulations: a software tool to create scientific simulations in Java , 2004 .

[26]  KofmanErnesto,et al.  Quantized-state systems , 2001 .

[27]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .