Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction

Abstract We describe experimental observations of symmetry breaking stationary patterns. These patterns are interpreted as the first unambiguous evidence of Turing-type structures in a single-phase isothermal chemical reaction system. Experiments are conducted with the versatile chlorite-iodide-malonic acid reaction in open spatial reactors filled with hydrogel. A phase diagram gathering the domain of existence of symmetry breaking and no-symmetry breaking standing patterns is discussed.

[1]  S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability , 1961 .

[2]  H. Swinney,et al.  Sustained chemical waves in an annular gel reactor: a chemical pinwheel , 1987, Nature.

[3]  Irving R. Epstein,et al.  Systematic design of chemical oscillators. Part 8. Batch oscillations and spatial wave patterns in chlorite oscillating systems , 1982 .

[4]  Chang-Hwan Kim,et al.  Iodine Catalysis in the Chlorite-Iodide Reaction1 , 1965 .

[5]  J. Keener,et al.  Singular perturbation theory of traveling waves in excitable media (a review) , 1988 .

[6]  A. Indelli Kinetic Study on the Reaction of Sodium Chlorite with Potassium Iodide , 1964 .

[7]  G. Dewel,et al.  Hydrodynamic instabilities and photochemical reactions , 1983, Nature.

[8]  W. Lugt,et al.  The Knight shift in liquid alkali alloys , 1968 .

[9]  H. Swinney,et al.  Sustained spiral waves in a continuously fed unstirred chemical reactor , 1988 .

[10]  H. Swinney,et al.  Spacial patterns in a uniformly fed membrane reactor , 1991 .

[11]  L. Streit,et al.  Dynamics and Stochastic Processes Theory and Applications , 1990 .

[12]  A. Arneodo,et al.  Instabilities of front patterns in reaction-diffusion systems , 1991 .

[13]  I. Epstein,et al.  Gravity-induced anisotropies in chemical waves , 1986 .

[14]  Q. Ouyang,et al.  Bistable and oscillating chemical reactions , 1987 .

[15]  M. Orbán Chemical oscillation during the uncatalyzed reaction of aromatic compounds with bromates. 4. Stationary and moving structures in uncatalyzed oscillatory chemical reactions , 1980 .

[16]  Swinney,et al.  Regular and chaotic chemical spatiotemporal patterns. , 1988, Physical review letters.

[17]  H. Swinney,et al.  Symmetry breaking in a chemical pinwheel , 1989 .

[18]  Alain Arneodo,et al.  Spatiotemporal patterns and diffusion-induced chaos in a chemical system with equal diffusion coefficients , 1990 .

[19]  D. Avnir,et al.  Spatial structures generated by chemical reactions at interfaces , 1984, Nature.

[20]  Irving R. Epstein,et al.  Systematic design of chemical oscillators. 42. Dynamic behavior in the chlorite-iodide reaction: a simplified mechanism , 1987 .

[21]  J. Pearson,et al.  Turing instabilities with nearly equal diffusion coefficients , 1989 .

[22]  A. Zhabotinsky,et al.  Autowave processes in a distributed chemical system. , 1973, Journal of theoretical biology.

[23]  J. Roux,et al.  Sustained reaction-diffusion structures in an open reactor , 1989 .

[24]  I. Epstein,et al.  Chlorite-iodide reaction: a versatile system for the study of nonlinear dynamic behavior , 1990 .

[25]  Dulos,et al.  Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. , 1990, Physical review letters.

[26]  A. T. Winfree,et al.  Simulation of Wave Processes in Excitable Media , 1988 .

[27]  Irving R. Epstein,et al.  Systematic design of chemical oscillators. Part 65. Batch oscillation in the reaction of chlorine dioxide with iodine and malonic acid , 1990 .

[28]  K. Showalter Pattern formation in a ferroin‐bromate system , 1980 .

[29]  H. Swinney,et al.  Spatiotemporal patterns in a one-dimensional open reaction-diffusion system , 1990 .