Sustainable and smart metal forming manufacturing process

Abstract Metal forming process is one of the oldest manufacturing techniques. It has witnessed the shift from conventional to integration of smart systems for manufacturing of highly complex components. Many mathematical, experimental and simulation software techniques are discussed. Servo press is the most indispensable machine used for the manufacturing of delicate parts of automobile, aviation industry with high accuracy. The main motive of replacing or modifying the prevailing conventional manufacturing techniques into modern, smart and sustainable manufacturing like industry 4.0 is to become more competitive and to adopt customization & sustainability. Integration of industrial internet of things (IIoT) with automated supply chain has given optimized productivity, quality, and economical feasibility. This manuscript throws some light on different metal forming process, servo press application in automobile, aviation industry and different components require to make metal forming smart and sustainable in term of industry 4.0.

[1]  J. Allwood,et al.  Bulk forming of sheet metal , 2012 .

[2]  A. Tekkaya,et al.  A review on hot stamping , 2010 .

[3]  Mohammed A. Omar,et al.  Design for sustainability in automotive industry: A comprehensive review , 2012 .

[4]  Alexander Brosius,et al.  Corner Strengthening by Local Thickening and Ausforming Using Planar Compression in Hot Stamping of Ultra-High Strength Steel Parts , 2021, Metals.

[5]  Vukota Boljanovic,et al.  Sheet Metal Forming Processes and Die Design , 2004 .

[6]  Mohd Khairol Anuar Mohd Ariffin,et al.  Process parameters for cylindrical deep drawing components , 2015 .

[7]  Yue Wang,et al.  From hierarchy to hybrid: The evolving nature of inter-firm governance in China's automobile groups , 2011 .

[8]  Snorri Gudmundsson The Aircraft Design Process , 2014 .

[9]  Leandro R. Alejano,et al.  Strength and dilation of jointed granite specimens in servo-controlled triaxial tests , 2014 .

[10]  Timothy G. Gutowski,et al.  The energy requirements and environmental impacts of sheet metal forming: An analysis of five forming processes , 2017 .

[11]  Leandro Vieira,et al.  Lean Manufacturing and Ergonomic Working Conditions in the Automotive Industry , 2015 .

[12]  Stephan M. Wagner,et al.  Additive manufacturing’s impact and future in the aviation industry , 2016 .

[13]  Robert C. Allen,et al.  The British Industrial Revolution in Global Perspective , 2009 .

[14]  Lale Canan Dulger,et al.  Structural design and analysis of a servo crank press , 2016 .

[15]  Manish Kumar Sagar,et al.  Supplier Selection Criteria : Study of Automobile Sector in India , 2012 .

[16]  Beata Mrugalska,et al.  Towards Lean Production in Industry 4.0 , 2017 .

[17]  Peter Groche,et al.  Controlling Product Stiffness by an Incremental Sheet Metal Forming Process , 2017 .

[18]  Z. Marciniak,et al.  The mechanics of sheet metal forming , 1992 .

[19]  M. Mohamed,et al.  Review on sheet metal forming process of aluminium alloys , 2016 .

[20]  Frantisek Zezulka,et al.  Industry 4.0 – An Introduction in the phenomenon , 2016 .

[21]  M. Ben-Daya,et al.  Internet of things and supply chain management: a literature review , 2019, Int. J. Prod. Res..

[22]  Joaquín B. Ordieres Meré,et al.  Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm , 2014, 2014 IEEE International Conference on Industrial Engineering and Engineering Management.

[23]  Li Da Xu,et al.  Industry 4.0: state of the art and future trends , 2018, Int. J. Prod. Res..

[24]  Tomoyoshi Maeno,et al.  Improvement in formability by control of temperature in hot stamping of ultra-high strength steel parts , 2014 .

[25]  Rumi Ghosh,et al.  Manufacturing Analytics and Industrial Internet of Things , 2017, IEEE Intelligent Systems.

[26]  E. Doege,et al.  Sheet metal forming of magnesium wrought alloys — formability and process technology , 2001 .

[27]  Shiro Kobayashi,et al.  Metal forming and the finite-element method , 1989 .

[28]  R. Padmanabhan,et al.  Influence of process parameters on the deep drawing of stainless steel , 2007 .

[29]  Kire Trivodaliev,et al.  A review of Internet of Things for smart home: Challenges and solutions , 2017 .

[30]  Eleonora Atzeni,et al.  Direct Metal Laser Sintering: an additive manufacturing technology ready to produce lightweight structural parts for robotic applications , 2013 .

[31]  K. Venkataraman Sheet Metal Forming Processes , 2015, Design of Jigs, Fixtures and Press Tools.

[32]  Thomas B. Stoughton,et al.  A general forming limit criterion for sheet metal forming , 2000 .

[33]  Shigemi Kagawa,et al.  Identifying environmentally important supply chain clusters in the automobile industry , 2013 .

[34]  Andrew Kusiak,et al.  Data-driven smart manufacturing , 2018, Journal of Manufacturing Systems.

[35]  Thomas F. Edgar,et al.  Smart manufacturing, manufacturing intelligence and demand-dynamic performance , 2012, Comput. Chem. Eng..

[36]  Heung Nam Han,et al.  A ductile fracture criterion in sheet metal forming process , 2003 .

[37]  Taylan Altan,et al.  Mechanical servo press technology for metal forming , 2011 .

[38]  J.A. Ferreira,et al.  Design and control of a hydraulic press , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[39]  Ying Liu,et al.  A categorical framework of manufacturing for industry 4.0 and beyond , 2016 .

[40]  Julian M. Allwood,et al.  Yield improvement opportunities for manufacturing automotive sheet metal components , 2017 .

[41]  M. Yang,et al.  Smart metal forming with digital process and IoT , 2018, International Journal of Lightweight Materials and Manufacture.

[42]  P. Stearns The Industrial Revolution in World History , 1994 .

[43]  Dorel Banabic,et al.  Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation , 2010 .

[44]  D. Ramana Reddy,et al.  Design and analysis of aircraft sheet metal for spring back effect , 2017 .

[45]  Jinwoo Park,et al.  Developing performance measurement system for Internet of Things and smart factory environment , 2017, Int. J. Prod. Res..

[46]  日本自動車工業会 The motor industry of Japan , 2008 .

[47]  K. Narasimhan,et al.  Effect of microstructure and texture on forming behaviour of AA-6061 aluminium alloy sheet , 2017 .

[48]  Masato Okada,et al.  Optimum Back-pressure Forging Using Servo Die Cushion☆ , 2014 .

[49]  J. P. Dwivedi,et al.  Study of factors affecting Springback in Sheet Metal Forming and Deep Drawing Process , 2018 .

[50]  Geeta Agnihotri,et al.  Study of Deep Drawing Process Parameters , 2017 .

[51]  Xianhong Han,et al.  5.17 – Hot Stamping , 2014 .

[52]  Angappa Gunasekaran,et al.  IoT powered servitization of manufacturing – an exploratory case study , 2017 .

[53]  Mohsen Guizani The Industrial Internet of Things , 2019, IEEE Netw..

[54]  Ray Y. Zhong,et al.  Intelligent Manufacturing in the Context of Industry 4.0: A Review , 2017 .

[55]  K. Mori Smart Hot Stamping for Ultra-high Strength Steel Parts , 2015 .

[56]  Dong-Yol Yang,et al.  Improvement of formability for the incremental sheet metal forming process , 2000 .

[57]  Formability study of Ti-6Al-4V alloy under warm conditions , 2015 .

[58]  Recep Halicioglu,et al.  Improvement of metal forming quality by motion design , 2018, Robotics and Computer-Integrated Manufacturing.

[59]  P. Friedman,et al.  Warm forming behavior of high strength aluminum alloy AA7075 , 2012 .

[60]  Markus Bambach,et al.  Investigation into a new hybrid forming process: Incremental sheet forming combined with stretch forming , 2009 .

[61]  F. Micari,et al.  Severe Plastic Deformation (SPD) Processes for Metals , 2008 .

[62]  R. Matsumoto,et al.  Die quenching limit of AA2024 aluminum alloy billet on servo press , 2014 .

[63]  John Monaghan,et al.  Deep drawing process: analysis and experiment , 2003 .

[64]  K. Venkataraman Design of Jigs, Fixtures and Press Tools: Venkataraman/Design of Jigs, Fixtures and Press Tools , 2015 .

[65]  Rolf Dieter Schraft,et al.  Incremental sheet metal forming by industrial robots , 2005 .

[66]  G. Ganesan,et al.  Influence of Variables in Deep Drawing of AA 6061 Sheet , 2010 .

[67]  Rajesh Kumar Mehta,et al.  An Exploratory Study on Implementation of Lean Manufacturing Practices (With Special Reference to Automobile Sector Industry) , 2012 .

[68]  K. Manabe,et al.  FE forming analysis with nonlinear friction coefficient model considering contact pressure, sliding velocity and sliding length , 2016 .

[69]  M. Taylan Das,et al.  Robotics and servo press control applications: Experimental implementations , 2016, 2016 International Conference on Control, Decision and Information Technologies (CoDIT).

[70]  G. Seliger,et al.  Opportunities of Sustainable Manufacturing in Industry 4.0 , 2016 .

[71]  Sang Do Noh,et al.  Smart manufacturing: Past research, present findings, and future directions , 2016, International Journal of Precision Engineering and Manufacturing-Green Technology.

[72]  Ken-ichiro Mori,et al.  Application of Servo Presses to Sheet Metal Forming , 2011 .

[73]  Tadashi Yamamoto,et al.  Effect of Forming Speed in Precision Forging Process Evaluated Using CAE Technology and High Performance Servo-press Machine , 2014 .

[74]  Lenin Babu Mailan Chinnapandi,et al.  Deep drawing process at the elevated temperature: A critical review and future research directions , 2019, CIRP Journal of Manufacturing Science and Technology.

[75]  D. Maneetham,et al.  Modeling, simulation and control of high speed nonlinear hydraulic servo system , 2010 .

[76]  Kurt Lange Modern metal forming technology for industrial production , 1997 .

[77]  Annamaria Gisario,et al.  Metal additive manufacturing in the commercial aviation industry: A review , 2019, Journal of Manufacturing Systems.

[78]  Recep Halicioglu,et al.  Mechanisms, classifications, and applications of servo presses: A review with comparisons , 2016 .

[79]  Vasja Roblek,et al.  A Complex View of Industry 4.0 , 2016 .

[80]  A. Kusiak Smart manufacturing , 2018, Int. J. Prod. Res..

[81]  M. Saad,et al.  An investigation of supply chain performance measurement in the Indian automotive sector , 2006 .

[82]  Hartmut Hoffmann,et al.  An investigation of the blanking process of the quenchable boron alloyed steel 22MnB5 before and after hot stamping process , 2012 .

[83]  J. J. Park,et al.  Effect of process parameters on formability in incremental forming of sheet metal , 2002 .

[84]  In Lee,et al.  The Internet of Things (IoT): Applications, investments, and challenges for enterprises , 2015 .

[85]  A. Makinouchi,et al.  Sheet metal forming simulation in industry , 1996 .

[86]  Morton Rothstein,et al.  The Industrial Revolution in World History , 1994 .

[87]  Metal-Forming Processes , 1989 .

[88]  R. C. Epstein,et al.  The automobile industry , 1928 .

[89]  Ken-ichiro Mori,et al.  Springback behaviour in bending of ultra-high-strength steel sheets using CNC servo press , 2007 .

[90]  S. G. Deshmukh,et al.  Environmentally responsive supply chains , 2009 .

[91]  Wu He,et al.  Internet of Things in Industries: A Survey , 2014, IEEE Transactions on Industrial Informatics.

[92]  K. Suresh,et al.  A review on the evaluation of formability in sheet metal forming , 2020 .

[93]  Hiroshi Utsunomiya,et al.  Shape accuracy in the forming of deep holes with retreat and advance pulse ram motion on a servo press , 2013 .

[94]  V. Nandedkar,et al.  Factors Affecting on Springback in Sheet Metal Bending : A Review , 2014 .

[95]  Zou Lin,et al.  Optimization of die profile for improving die life in the hot extrusion process , 2003 .

[96]  M. Tisza,et al.  Integrated Process Simulation and Die-Design in Sheet Metal Forming , 2008 .