A genome-wide association study identifies six novel risk loci for primary biliary cholangitis

[1]  Casey S. Greene,et al.  International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways , 2015, Nature Communications.

[2]  Huabin Li,et al.  Human IL-21+IFN-γ+CD4+ T cells in nasal polyps are regulated by IL-12 , 2015, Scientific Reports.

[3]  I. Mackay,et al.  AUTOIMMUNE, CHOLESTATIC AND BILIARY DISEASE Chemokine (C-X-C Motif) Ligand 13 Promotes Intrahepatic Chemokine (C-X-C Motif) Receptor 51 Lymphocyte Homing and Aberrant B-Cell Immune Responses in Primary Biliary Cirrhosis , 2015 .

[4]  K. Tokunaga,et al.  Human primary biliary cirrhosis-susceptible allele of rs4979462 enhances TNFSF15 expression by binding NF-1 , 2015, Human Genetics.

[5]  Liangdan Sun,et al.  Whole-exome SNP array identifies 15 new susceptibility loci for psoriasis , 2015, Nature Communications.

[6]  M. Seldin,et al.  Multiple Genetic Variants Associated with Primary Biliary Cirrhosis in a Han Chinese Population , 2015, Clinical Reviews in Allergy & Immunology.

[7]  Jiyuan Zhang,et al.  CXCR5+ CD4+ T follicular helper cells participate in the pathogenesis of primary biliary cirrhosis , 2015, Hepatology.

[8]  C. Webb,et al.  Disease Activity in Systemic Lupus Erythematosus Correlates With Expression of the Transcription Factor AT‐Rich–Interactive Domain 3A , 2014, Arthritis & rheumatology.

[9]  C. Abraham,et al.  A TNFSF15 disease-risk polymorphism increases pattern-recognition receptor-induced signaling through caspase-8–induced IL-1 , 2014, Proceedings of the National Academy of Sciences.

[10]  J. Richmond,et al.  Regulation of Cellular Processes by Interleukin‐16 in Homeostasis and Cancer , 2014, Journal of cellular physiology.

[11]  Minoru Nakamura,et al.  The Role of TL1A and DR3 in Autoimmune and Inflammatory Diseases , 2013, Mediators of inflammation.

[12]  M. Peters,et al.  Systematic identification of trans eQTLs as putative drivers of known disease associations , 2013, Nature Genetics.

[13]  Judy H. Cho,et al.  Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis , 2013, Nature Genetics.

[14]  P. Gregersen,et al.  Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk variants. , 2012, Human molecular genetics.

[15]  Y. Maehara,et al.  Genome-wide association study identifies TNFSF15 and POU2AF1 as susceptibility loci for primary biliary cirrhosis in the Japanese population. , 2012, American journal of human genetics.

[16]  Daniel J. Gaffney,et al.  Dense fine-mapping study identifies new susceptibility loci for primary biliary cirrhosis , 2012, Nature Genetics.

[17]  Fred A. Wright,et al.  seeQTL: a searchable database for human eQTLs , 2011, Bioinform..

[18]  Manolis Kellis,et al.  HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants , 2011, Nucleic Acids Res..

[19]  L. Peltonen,et al.  Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis , 2011, Nature Genetics.

[20]  M. Esiri,et al.  IL-21 and IL-21 Receptor Expression in Lymphocytes and Neurons in Multiple Sclerosis Brain , 2011, The American journal of pathology.

[21]  Christian Schmidt,et al.  The ARID Family Transcription Factor Bright Is Required for both Hematopoietic Stem Cell and B Lineage Development , 2011, Molecular and Cellular Biology.

[22]  David E. J. Jones,et al.  The genetics of primary biliary cirrhosis: The revolution moves on , 2011, Hepatology.

[23]  Q. Mi,et al.  Neutralization of Interleukin-16 Protects Nonobese Diabetic Mice From Autoimmune Type 1 Diabetes by a CCL4-Dependent Mechanism , 2010, Diabetes.

[24]  Fabio Macciardi,et al.  Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis , 2010, Nature Genetics.

[25]  Michael Boehnke,et al.  LocusZoom: regional visualization of genome-wide association scan results , 2010, Bioinform..

[26]  M. Seielstad,et al.  Genetic structure of the Han Chinese population revealed by genome-wide SNP variation. , 2009, American journal of human genetics.

[27]  M. Daly,et al.  Genetic variants at CD28, PRDM1, and CD2/CD58 are associated with rheumatoid arthritis risk , 2009, Nature Genetics.

[28]  Pablo Moscato,et al.  Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20 , 2009, Nature Genetics.

[29]  K. Siminovitch,et al.  Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. , 2009, The New England journal of medicine.

[30]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[31]  Margaret A. Pericak-Vance,et al.  The role of the CD58 locus in multiple sclerosis , 2009, Proceedings of the National Academy of Sciences.

[32]  Wei Huang,et al.  Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21 , 2009, Nature Genetics.

[33]  Liuda Ziaugra,et al.  SNP Genotyping Using the Sequenom MassARRAY iPLEX Platform , 2009, Current protocols in human genetics.

[34]  Yusuke Nakamura,et al.  Japanese population structure, based on SNP genotypes from 7003 individuals compared to other ethnic groups: effects on population-based association studies. , 2008, American journal of human genetics.

[35]  Pablo Villoslada,et al.  Analysis and Application of European Genetic Substructure Using 300 K SNP Information , 2008, PLoS genetics.

[36]  D. Koller,et al.  Population genomics of human gene expression , 2007, Nature Genetics.

[37]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[38]  Mark Daly,et al.  Haploview: analysis and visualization of LD and haplotype maps , 2005, Bioinform..

[39]  R. Zhong,et al.  Cytotoxic T lymphocyte associated antigen-4 gene polymorphisms confer susceptibility to primary biliary cirrhosis and autoimmune hepatitis in Chinese population. , 2004, World journal of gastroenterology.

[40]  R. Gish,et al.  Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment. , 2004, Gastroenterology.

[41]  M. Dumont,et al.  European Association for the Study of the Liver , 1971 .

[42]  F. Lammert,et al.  EASL Clinical Practice Guidelines: management of cholestatic liver diseases. , 2009, Journal of hepatology.

[43]  K. Lazaridis,et al.  Primary biliary cirrhosis , 1998, Springer Netherlands.