Spectral Embedding and Min Cut for Image Segmentation

Recently it has been shown that min-cut algorithms can provide perceptually salient image segments when they are given appropriate proposals for source and sink regions. Here we explore the use of random walks and associated spectral embedding techniques for the automatic generation of suitable proposal regions. To do this, we first derive a mathematical connection between spectral embedding and anisotropic image smoothing kernels. We then use properties of the spectral embedding and the associated smoothing kernels to select multiple pairs of source and sink regions for min-cut. This typically provides an over-segmentation, and therefore region merging is used to form the final image segmentation. We demonstrate this process on several sample images.

[1]  Andrew V. Goldberg,et al.  On Implementing Push-Relabel Method for the Maximum Flow Problem , 1995, IPCO.

[2]  Jianbo Shi,et al.  A Random Walks View of Spectral Segmentation , 2001, AISTATS.

[3]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[4]  A. Jepson,et al.  Spectral methods for multi-scale feature extraction and data clustering , 2004 .

[5]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  John G. Kemeny,et al.  Finite Markov Chains. , 1960 .

[7]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Richard M. Leahy,et al.  An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[10]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[11]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[12]  Vladimir Kolmogorov,et al.  An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  David R. Karger,et al.  A new approach to the minimum cut problem , 1996, JACM.

[14]  Dorin Comaniciu,et al.  Mean shift analysis and applications , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[15]  John G. Kemeny,et al.  Finite Markov chains , 1960 .

[16]  Daniel P. Huttenlocher,et al.  Image segmentation using local variation , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[17]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Olga Veksler,et al.  Image segmentation by nested cuts , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[19]  Michael Werman,et al.  Self-Organization in Vision: Stochastic Clustering for Image Segmentation, Perceptual Grouping, and Image Database Organization , 2001, IEEE Trans. Pattern Anal. Mach. Intell..