On the Concept of a Single Crystal in Biomineralization

[1]  S. Weiner,et al.  Cellular control over spicule formation in sea urchin embryos: A structural approach. , 1999, Journal of structural biology.

[2]  S. Weiner,et al.  Design strategies of sea urchin teeth: structure, composition and micromechanical relations to function. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[3]  J. Aizenberg,et al.  Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[4]  J. Aizenberg,et al.  Control of Macromolecule Distribution within Synthetic and Biogenic Single Calcite Crystals , 1997 .

[5]  J. Aizenberg,et al.  Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates , 1996 .

[6]  S. Weiner,et al.  Polysaccharides of Intracrystalline Glycoproteins Modulate Calcite Crystal Growth In Vitro , 1996 .

[7]  J. Aizenberg,et al.  Biologically Induced Reduction in Symmetry: A Study of Crystal Texture of Calcitic Sponge Spicules , 1995 .

[8]  J. Aizenberg,et al.  Morphogenesis of calcitic sponge spicules: a role for specialized proteins interacting with growing crystals , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[9]  J. Aizenberg,et al.  Crystal-protein interactions studied by overgrowth of calcite on biogenic skeletal elements , 1994 .

[10]  E. Davidson,et al.  Later embryogenesis: regulatory circuitry in morphogenetic fields. , 1993, Development.

[11]  J. Hanson,et al.  Crystal-protein interactions : controlled anisotropic changes in crystal microtexture , 1993 .

[12]  T. Koetzle,et al.  Biological Control of Crystal Texture: A Widespread Strategy for Adapting Crystal Properties to Function , 1993, Science.

[13]  S. Weiner,et al.  Intercalation of sea urchin proteins in calcite: study of a crystalline composite material. , 1990, Science.

[14]  S. Mann,et al.  Single crystalline nature of coccolith elements of the marine alga Emiliania huxleyi as determined by electron diffraction and high-resolution transmission electron microscopy , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[15]  W. Lennarz,et al.  Skeletogenesis in the sea urchin embryo. , 1988, Development.

[16]  A. Mathieson Small-single-crystal diffractometry with monochromated synchrotron radiation – the wavelength-dispersion minimum condition for Bragg reflection profile measurement , 1988 .

[17]  S. Weiner,et al.  Interactions of sea-urchin skeleton macromolecules with growing calcite crystals— a study of intracrystalline proteins , 1988, Nature.

[18]  R. Blakemore,et al.  Structure, morphology and crystal growth of anisotropic magnetite crystals in magnetotactic bacteria , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[19]  H. Weber,et al.  Measurement and correction of secondary extinction in CaF2 by means of synchrotron X-ray diffraction data , 1986 .

[20]  S. Weiner,et al.  Organic matrixlike macromolecules associated with the mineral phase of sea urchin skeletal plates and teeth. , 1985, The Journal of experimental zoology.

[21]  M. Koehl MECHANICAL DESIGN OF SPICULE-REINFORCED CONNECTIVE TISSUE: STIFFNESS , 1982 .

[22]  A. Mathieson Anatomy of a Bragg reflexion and an improved prescription for integrated intensity , 1982 .

[23]  Jack D. Dunitz,et al.  X-Ray Analysis and the Structure of Organic Molecules , 1979 .

[24]  F. Lippmann Sedimentary Carbonate Minerals , 1973 .

[25]  P. Hudgson Cell structure and its interpretation , 1970 .

[26]  David L. Pawson,et al.  X-ray Diffraction Studies of Echinoderm Plates , 1969, Science.

[27]  J. Weber,et al.  Unusual strength properties of echinoderm calcite related to structure. , 1969, Journal of ultrastructure research.

[28]  D. Spears,et al.  The formation of sedimentary iron minerals , 1968 .

[29]  R. Cifelli,et al.  Wall ultrastructure in the calcareous Foraminifera; crystallographic aspects and a model for calcification , 1967 .

[30]  B. Warren,et al.  The diffraction pattern of fine particle carbon blacks , 1965 .

[31]  G. S. Smith,et al.  Single‐crystal intensity measurements with the three‐circle counter diffractometer , 1962 .

[32]  A. Wilson On Variance as a Measure of Line Broadening in Diffractometry General Theory and Small Particle Size , 1962 .

[33]  Erik Rönnholm The amelogenesis of human teeth as revealed by electron microscopy. II. The development of the enamel crystallites. , 1962 .

[34]  T. Gustafson,et al.  Studies on the cellular basis of morphogenesis of the sea urchin embryo. Development of the skeletal pattern. , 1961, Experimental cell research.

[35]  R. Robinson,et al.  An electron-microscopic study of the crystalline inorganic component of bone and its relationship to the organic matrix. , 1952, The Journal of bone and joint surgery. American volume.

[36]  A. Wilson,et al.  A method of calculating the integral breadths of Debye-Scherrer lines: generalization to non-cubic crystals , 1942, Mathematical Proceedings of the Cambridge Philosophical Society.

[37]  B. Warren X-Ray Diffraction in Random Layer Lattices , 1941 .

[38]  E. A. Minchin Memoirs: Materials for a Monograph of the Ascons.--I. On the Origin and Growth of the Triradiate and Quadriradiate Spicules in the Family Clathrinidæ , 1908 .

[39]  S. Weiner,et al.  Design strategies in mineralized biological materials , 1997 .

[40]  J. Aizenberg,et al.  Intracrystalline macromolecules are involved in the morphogenesis of calcitic sponge spicules. , 1996, Connective tissue research.

[41]  K. Simkiss,et al.  Biomineralization : cell biology and mineral deposition , 1989 .

[42]  P. Dubois,et al.  Calcification in echinoderms , 1989 .

[43]  Joseph E. Varner,et al.  Self-assembling architecture , 1988 .

[44]  J. L. Gould,et al.  Biogenic magnetite as a basis for magnetic field detection in animals. , 1981, Bio Systems.

[45]  K. Towe,et al.  The crystallography of Patellina corrugata Williamson; a-axis preferred orientation , 1977 .

[46]  K. Okazaki,et al.  CRYSTAL PROPERTY OF THE LARVAL SEA URCHIN SPICULE * , 1976, Development, growth & differentiation.

[47]  André Guinier,et al.  X-ray Crystallography. (Book Reviews: X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies) , 1963 .

[48]  L. Alexander,et al.  X-ray diffraction procedures , 1954 .